

GIObal United Technology Services Co., Ltd.

Report No.: GTS202010000055E02

TEST REPORT

Applicant:	Dragino Technology Co., Limited.
Address of Applicant:	Room 202,BaoChengTai industrial park,No.8 CaiYun LongCheng Street,LongGang District, Shenzhen 518116, China
Manufacturer/Factory:	Dragino Technology Co., Limited.
Address of Manufacturer/Factory:	Room 202,BaoChengTai industrial park,No.8 CaiYun LongCheng Street,LongGang District, Shenzhen 518116, China
Equipment Under Test (EU	Т)
Product Name:	LoRaWAN Gateway
Model No.:	DLOS8
Trade Mark:	Dragino
Applicable standards:	ETSI EN 300 220-1 V3.1.1 (2017-02) ETSI EN 300 220-2 V3.2.1 (2018-06)
Date of sample receipt:	Oct. 12, 2020
Date of Test:	Oct. 12 – Nov. 03, 2020
Date of report issue:	Nov. 04, 2020
Test Result :	PASS *

*In the configuration tested, the EUT complied with the standards specified above.

The CE mark as shown below can be used, under the responsibility of the manufacturer, after completion of an EC Declaration of Conformity and compliance with all relevant EC Directives. The protection requirements with respect to electromagnetic compatibility contained in Directive 2014/53/EU are considered.

Robinson Luo Laboratory Manager

This results shown in this test report refer only to the sample(s) tested, this test report cannot be reproduced, except in full, without prior written permission of the company. The report would be invalid without specific stamp of test institute and the signatures of compiler and approver. Page 1 of 39

2 Version

Report No.: GTS202010000055E02

Version No.	Date	Description
00	Nov. 04, 2020	Original

Prepared By:

Date:

Nov. 04, 2020

Project Engineer

Check By:

500 Cust Date: Reviewer

Nov. 04, 2020

GTS

Report No.: GTS202010000055E02

3	Con	tents	_
1	COVE	R PAGE	Page 1
2	VERS	ION	2
3	CONT	ENTS	3
4	TEST	SUMMARY	4
5	GENE	RAL INFORMATION	5
	5.1 (GENERAL DESCRIPTION OF EUT	5
		TEST MODE	
	-	Test Facility	
		Test Location	
	-	DESCRIPTION OF SUPPORT UNITS	
		DEVIATION FROM STANDARDS	
		ABNORMALITIES FROM STANDARD CONDITIONS	
	5.8 (OTHER INFORMATION REQUESTED BY THE CUSTOMER	6
6	TEST	INSTRUMENTS LIST	7
7	RADI	O TECHNICAL REQUIREMENTS SPECIFICATION IN ETSI EN 300 220-2	Q
'		TEST CONDITIONS	
		TRANSMITTER REQUIREMENT	
	7.2.1	Operation Frequency	
	7.2.7	Effective Radiated Power	
	7.2.3	Duty Cycle	
	7.2.4	Occupied Bandwidth	
	7.2.5	Frequency Error	
	7.2.6	TX Out Of Band Emissions	
	7.2.7	Transient power	
	7.2.8	Transmit spurious emissions	
	7.3 I	RECEIVER REQUIREMENTS	
	7.3.1	Receiver sensitivity	33
	7.3.2	Clear Channel Assessment threshold	
	7.3.3	Polite spectrum access timing parameters	33
	7.3.4	Adaptive Frequency Agility	
	7.3.5	Adjacent channel selectivity	
	7.3.6	Receiver saturation at Adjacent Channel	
	7.3.7	Spurious response rejection	
	7.3.8	Behaviour at high wanted signal level	
	7.3.9	Bi-Directional Operation Verification	
	7.3.10	0	
	7.3.11		
8	TEST	SETUP PHOTO	39
9	EUT (CONSTRUCTIONAL DETAILS	39

4 Test Summary

R	adio Spectrum Matter	(RSM) Part of Tx	1	
Test item	Test Requirement	Test method	Limit/Severity	Result
Operating frequency	ETSI EN 300 220-2	ETSI EN 300 220-1	Annexes B or C of EN 300 220-2	Pass
Effective Radiated Power	ETSI EN 300 220-2	ETSI EN 300 220-1	Annexes B or C of EN 300 220-2	Pass
Maximum e.r.p. Spectral Density	ETSI EN 300 220-2	ETSI EN 300 220-1	Annexes B or C of EN 300 220-2	N/A
Duty cycle	ETSI EN 300 220-2	ETSI EN 300 220-1	Annexes B or C of EN 300 220-2	Pass
Occupied Bandwidth	ETSI EN 300 220-2	ETSI EN 300 220-1	Annexes B or C of EN 300 220-2	Pass
Frequency Error	ETSI EN 300 220-2	ETSI EN 300 220-1	Clause 5.7	Pass
Tx Out of Band Emissions	ETSI EN 300 220-2	ETSI EN 300 220-1	Clause 5.8.2	Pass
Transmit Spurious Emmisions	ETSI EN 300 220-2	ETSI EN 300 220-1	Clause 5.9.2	Pass
Transient Power	ETSI EN 300 220-2	ETSI EN 300 220-1	Clause 5.10.2	Pass
Adjacent Channel Power	ETSI EN 300 220-2	ETSI EN 300 220-1	Clause 5.11.2	N/A
TX behaviour under Low Voltage Conditions	ETSI EN 300 220-2	ETSI EN 300 220-1	Clause 5.12.2	Pass
Adaptive Power Control	ETSI EN 300 220-2	ETSI EN 300 220-1	Clause 5.13.2	N/A
Short Term Behaviour	ETSI EN 300 220-2	N/A	annex C, table C.1	N/A
FHSS Equipment Requirements	ETSI EN 300 220-2	N/A	Clause 4.3.10.2	N/A
R	adio Spectrum Matter	(RSM) Part of Rx		
Test item	Test Requirement	Test method	Limit/Severity	Result
Receiver sensitivity	ETSI EN 300 220-2	ETSI EN 300 220-1	Clause 5.14.2	N/A
Adjacent channel selectivity	ETSI EN 300 220-1	ETSI EN 300 220-1	Clause 5.15.2	N/A
Receiver saturation at Adjacent Channel	ETSI EN 300 220-1	ETSI EN 300 220-1	Clause 5.16.2	N/A
Spurious response rejection	ETSI EN 300 220-1	ETSI EN 300 220-1	Clause 5.17.2	N/A
Blocking	ETSI EN 300 220-2	ETSI EN 300 220-1	Clause 5.18.2	Pass
Behaviour at high wanted signal level	ETSI EN 300 220-1	ETSI EN 300 220-1	Clause 5.19.2	N/A
Clear Channel Assessment threshold	ETSI EN 300 220-2	ETSI EN 300 220-1	Clause 5.21.2.2	N/A
Polite spectrum access timing parameters	ETSI EN 300 220-2	ETSI EN 300 220-1	Clause 5.21.3.1	N/A
Adaptive Frequency Agility	ETSI EN 300 220-2	N/A	N/A	N/A
Receive Spurious emmisions	ETSI EN 300 220-2	ETSI EN 300 220-1	Clause 5.9.2	Pass
Bi-Directional Operation Verification	ETSI EN 300 220-1	ETSI EN 300 220-1	Clause 5.22.2	N/A

Pass: The EUT complies with the essential requirements in the standard.

N/A: not applicable.

5 General Information

5.1 General Description of EUT

Product Name:	LoRaWAN Gateway				
Model No.:	DLOS8				
Hardware version:	N/A				
Software version:	N/A				
Operation Frequency:	867.1MHz-868.8MHz				
Occupied bandwidth	200kHz				
Number of Channels:	9				
Modulation type:	FSK				
Antenna Type:	fibre-glass epoxy antenna				
Antenna gain:	3.0dBi				
Power Supply:	AC/DC Adapter Model: TP02-120100E Input:AC100-240V, 50/60Hz Output: DC 12V, 1A				

Operation Frequency each of channel								
Channel	Frequency	Channel	Frequency	Channel	Frequency			
1	867.1MHz	4	867.7MHz	7	868.3MHz			
2	867.3MHz	5	867.9MHz	8	868.5MHz			
3	867.5MHz	6	868.1MHz	9	868.7MHz			

Test Channel	Frequency(MHz)
Lowest channel	867.1
Middle channel	867.9
Highest channel	868.7

5.2 Test mode

-					
	Transmitting mode	Keep the EUT in continuously transmitting mode			
	Receiving mode	Keep the EUT in continuously receiving mode			
5.3	Test Facility				
	 FCC —Registration No. Global United Technology described in a report filed from the FCC is maintained IC —Registration No.: 9 The 3m Semi-anechoic char Certification and Engineer No.: 9079A NVLAP (LAB CODE:600 Global United Technology 5 	Services Co., Ltd., Shenzhen EMC Laboratory has been registered and fully with the (FCC) Federal Communications Commission. The acceptance letter d in files. Registration 381383. 3079A amber of Global United Technology Services Co., Ltd. has been registered by ing Bureau of Industry Canada for radio equipment testing with Registration 0179-0 Services Co., Ltd., is accredited by the National Voluntary Laboratory			
5.4	Accreditation Program (NVLAP). LAB CODE:600179-0				
	All tests were performed at				
		Services Co., Ltd. ver A, Jinyuan Business Building, No.2, Laodong Industrial Zone, Xixiang Izhen, Guangdong, China 518102			
5.5	Description of Suppo	ort Units			
	None				
5.6	Deviation from Stand	lards			
	None				
5.7	7 Abnormalities from Standard Conditions				
	None				
	Other Information Requested by the Customer				
5.8	Other Information Re				

6 Test Instruments list

Rad	Radiated Emission:								
ltem	em Test Equipment Manufacturer		Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)			
1	3m Semi- Anechoic Chamber	ZhongYu Electron	9.2(L)*6.2(W)* 6.4(H)	GTS250	July. 02 2020	July. 01 2025			
2	Control Room	ZhongYu Electron	6.2(L)*2.5(W)* 2.4(H)	GTS251	N/A	N/A			
3	EMI Test Receiver	Rohde & Schwarz	ESU26	GTS203	June. 25 2020	June. 24 2021			
4	BiConiLog Antenna	SCHWARZBECK MESS-ELEKTRONIK	VULB9163	GTS214	June. 25 2020	June. 24 2021			
5	Double -ridged waveguide horn	SCHWARZBECK MESS-ELEKTRONIK	BBHA 9120 D	GTS208	June. 25 2020	June. 24 2021			
6	Horn Antenna	ETS-LINDGREN	3160	GTS217	June. 25 2020	June. 24 2021			
7	EMI Test Software	AUDIX	E3	N/A	N/A	N/A			
8	Coaxial Cable	GTS	N/A	GTS213	June. 25 2020	June. 24 2021			
9	Coaxial Cable	GTS	N/A	GTS211	June. 25 2020	June. 24 2021			
10	Coaxial cable	GTS	N/A	GTS210	June. 25 2020	June. 24 2021			
11	Coaxial Cable	GTS	N/A	GTS212	June. 25 2020	June. 24 2021			
12	Amplifier(100kHz-3GHz)	HP	8347A	GTS204	June. 25 2020	June. 24 2021			
13	Amplifier(2GHz-20GHz)	HP	84722A	GTS206	June. 25 2020	June. 24 2021			
14	Amplifier (18-26GHz)	Rohde & Schwarz	AFS33-18002 650-30-8P-44	GTS218	June. 25 2020	June. 24 2021			
15	Band filter	Amindeon	82346	GTS219	June. 25 2020	June. 24 2021			
16	Power Meter	Anritsu	ML2495A	GTS540	June. 25 2020	June. 24 2021			
17	Power Sensor	Anritsu	MA2411B	GTS541	June. 25 2020	June. 24 2021			
18	Wideband Radio Communication Tester	Rohde & Schwarz	CMW500	GTS575	June. 25 2020	June. 24 2021			
19	Splitter	Agilent	11636B	GTS237	June. 25 2020	June. 24 2021			
20	Loop Antenna	ZHINAN	ZN30900A	GTS534	June. 25 2020	June. 24 2021			
21	Breitband hornantenne	SCHWARZBECK	BBHA 9170	GTS579	Oct. 18 2020	Oct. 17 2021			
22	Amplifier	TDK	PA-02-02	GTS574	Oct. 18 2020	Oct. 17 2021			
23	Amplifier	TDK	PA-02-03	GTS576	Oct. 18 2020	Oct. 17 2021			
24	PSA Series Spectrum Analyzer	Rohde & Schwarz	FSP	GTS578	June. 25 2020	June. 24 2021			

RF C	RF Conducted Test:								
ltem	Test Equipment	Manufacturer	Model No.	Serial No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)			
1	MXA Signal Analyzer	Agilent	N9020A	GTS566	June. 25 2020	June. 24 2021			
2	EMI Test Receiver	R&S	ESCI 7	GTS552	June. 25 2020	June. 24 2021			
3	Spectrum Analyzer	Agilent	E4440A	GTS533	June. 25 2020	June. 24 2021			
4	MXG vector Signal Generator	Agilent	N5182A	GTS567	June. 25 2020	June. 24 2021			
5	ESG Analog Signal Generator	Agilent	E4428C	GTS568	June. 25 2020	June. 24 2021			
6	USB RF Power Sensor	DARE	RPR3006W	GTS569	June. 25 2020	June. 24 2021			
7	RF Switch Box	Shongyi	RFSW3003328	GTS571	June. 25 2020	June. 24 2021			
8	Programmable Constant Temp & Humi Test Chamber	WEWON	WHTH-150L-40-880	GTS572	June. 25 2020	June. 24 2021			

Gene	General used equipment:							
Item Test Equipment Manufacturer Model No.				Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)			
1	Humidity/ Temperature Indicator	KTJ	TA328	GTS243	June. 25 2020	June. 24 2021		
2	Barometer	ChangChun	DYM3	GTS255	June. 25 2020	June. 24 2021		

7 Radio Technical Requirements Specification in ETSI EN 300 220-2

7.1 Test conditions

Item	Normal	Extreme condition				
	condition	нүнт	LVHT	HVLT	LVLT	
Temperature	+25°C	+50°C	+50°C	-10ºC	-10ºC	
Voltage	AC 230V	AC 253V	AC 207V	AC 253V	AC 207V	
Humidity		20%-95%				
Atmospheric Pressure:		1008 mbar				

7.2 Transmitter Requirement

7.2.1 Operation Frequency

The Operational Frequency band was declared by the manufacturer which conforms annexes B, C or any NRI of ETSI EN 300220-2.

Test Requirement:	ETSI EN 300 220-2 clause 4.3.1
Test Method:	ETSI EN 300 220-1 clause 5.2.2
Test site:	Measurement Distance: 3m (Semi-Anechoic Chamber)
Receiver setup:	RBW=120kHz, VBW=300kHz, Detector= peak
Limit:	10mW=10dBm
Test setup:	Antenna Tower Antenna Tower 1.50m (Turntable) Test Receiver Test Receiver Test Receiver Test Receiver Test Receiver
Test procedure:	 Substitution method was performed to determine the actual ERP emission levels of the EUT. The following test procedure as below: 1. On the test site as test setup graph above, the EUT shall be placed at the 1.5m support on the turntable and in the position closest to normal use as declared by the provider. 2. The test antenna shall be oriented initially for vertical polarization and shall be chosen to correspond to the frequency of the transmitter. The output of the test antenna shall be connected to the measuring receiver. 3. The transmitter shall be switched on, if possible, without modulation and the measuring receiver shall be tuned to the frequency of the transmitter under test. 4. The test antenna shall be raised and lowered from 1m to 4m until a maximum signal level is detected by the measuring receiver. Then the turntable should be rotated through 360° in the horizontal plane, until the maximum signal level is detected by the measuring receiver. 5. Repeat step 4 for test frequency with the test antenna polarized horizontally. 6. Remove the transmitter and replace it with a substitution antenna (the antenna should be half-wavelength for each frequency involved). The center of the substitution antenna is very long, this will be impossible to achieve when the antenna is polarized vertically. In such case the lower end of the antenna should be 0.3 m above the ground. 7. Feed the substitution antenna at the transmitter end with a signal generator connected to the antenna by means of a nonradiating cable. With the astenna state of the substitution antenna by means of a nonradiating cable.

7.2.2 Effective Radiated Power

generator tuned to a particular test frequency, raise and lower the test
antenna to obtain a maximum reading at the spectrum analyzer. Adjust the level of the signal generator output until the previously recorded maximum reading for this set of conditions is obtained. This should be done carefully repeating the adjustment of the test antenna and generator output.
 Repeat step 7 with both antennas horizontally polarized for each test frequency.
9. Calculate power in dBm into a reference ideal half-wave dipole antenna by reducing the readings obtained in steps 7 and 8 by the power loss in the cable between the generator and the antenna, and further corrected for the gain of the substitution antenna used relative to an ideal half-wave dipole antenna by the following formula:
ERP(dBm) = Pg(dBm)) + antenna gain (dBd)
where:
Pg is the generator output power into the substitution antenna.
Uncertainty: 0.65dB
Refer to section 6.0 for details
Refer to section 5.2 for details
Pass

Measurement Data

Channel	ERP Level (dBm)	Limit (dBm)	Result
Lowest	12.31		
Middle	12.46	14.00	Pass
Highest	12.17		

Remark:Peak value is applicable.

7.2.3 Duty Cycle

Test Requirement:	ETSI EN 300 220-2 clause 4.3.3
Test Method:	ETSI EN 300 220-1 clause 5.4
Limit:	10%
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane
Test Instruments:	Refer to section 6.0 for details
Test mode:	Refer to section 5.2 for details
Test results:	Pass

Measurement Data

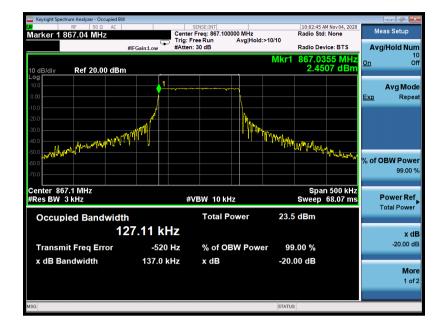
Ton time(s)	Tcycle time(s)	Dutycycle	Limit	Result
1.31	1800	0.073%	0.1%	Pass

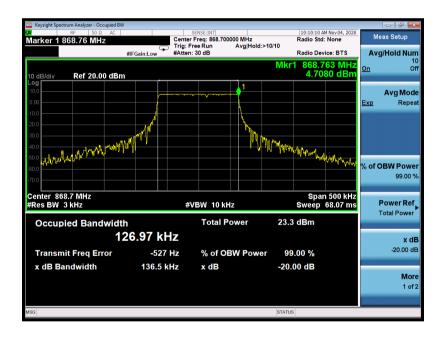
Note: The manufacturer declare transmit cycle is greater than 30min.

Plot:

7.2.4 Occupied Bandwidth

Test Method:				
	ETSI EN 300 2	220-1 clause 5.6		
Receive setup:	Table	12: Test Parameters fo	r Max Occupied Bandwidth Measurement	
	Setting	Value	Notes	
	Centre frequency	The nominal Operating Frequency	The highest or lowest Operating Frequency as declared by the manufacturer	
		1 % to 3 % of OCW		
	RBW	without being below 100 Hz		
	VBW	3 x RBW	Nearest available analyser setting to 3 x RBW	
	Span	At least 2 x Operating Channel width	Span should be large enough to include all major components of the signal and its side bands	
	Detector Mode	RMS		
	Trace	Max hold		
	Operational Fr	equency Band.	declared and shall reside entirely within the <i>i</i> dth at 99 % shall reside entirely within the	
Limit:		nnel defined by Fi		
Linit.			FHSS equipment.The Maximum occupied	
			shell less or equal to 50kHz. For 863 MHz	
			e Maximum occupied bandwidth per	
	hopping chann	el shell less or equi	ual to 100kHz.	
Test setup:	Spect	rum Analyzer		
	E.U.T			
		Non-Conducte	d Table	
		1		
		Ground Referen	ice Plane	
Test Procedure:	Step 1:			
	Operation of th	ne EUT shall be sta	arted, on the highest operating frequency	
			, with the appropriate test signal.	
	-		djusted to ensure that the signal power	
			e noise floor of the analyser to avoid the	
	-		e power envelope being included in the	
	measurement.			
	Step 2:			
			peak value of the trace shall be located	
		er marker placed	оп иль реак.	
	Step 3:	unied handwidth fu	nction of the spectrum analyser shall be	
			andwidth of the signal.	
Measurement Record:			Uncertainty: ±5%	
Test Instruments:	Refer to sectio	n 6.0 for details		
Test mode:	Refer to sectio	n 5.2 for details		
Test results:	Pass			


Measurement Data


Test condition	Channel	99% Occupied Bandwidth(kHz)	F _L (MHz)	F _H (MHz)	Limit	Result
	Lowest	127.11	867.0355	-		
NTNV	Highest	126.97	-	868.7360		
	Lowest	127.24	867.0279	-		
LTHV	Highest	127.35	-	868.7375	F_{low} and F_{high}	
	Lowest	127.42	867.0312	-	shall reside entirely within	Pass
LTLV	Highest	127.31	-	868.7349	the operating	1 033
HTLV	Lowest	127.34	867.0307	-	band	
HILV	Highest	127.02	-	868.7466		
	Lowest	127.13	867.0286	-		
HTHV	Highest	126.94	-	868.7531		

NTNV Test Plot:

Report No.: GTS202010000055E02

7.2.5 Frequency Error

Test Requirement:	ETSI EN 300 220-2 clause 4.3.3
Test Method:	ETSI EN 300 220-1 clause 5.7
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane
Test Procedure:	Step 1: Operation of the EUT shall be started on the nominal frequency as declared by the manufacturer under extreme high temperature and extreme voltage conditions. The frequency of the unmodulated carrier shall be measured and noted. Step 2: Operation of the EUT shall be started on the nominal frequency as declared by the manufacturer under extreme low temperature and extreme voltage conditions.
Measurement Record:	Uncertainty: ± 0.5ppm
Test Instruments:	Refer to section 6.0 for details
Test mode:	Refer to section 5.2 for details
Test results:	Pass

Measurement Data

Test conditions	Channel	Frequency(MHz)	A-N(KHz)	B-N(KHz)
	Lowest	867.1MHz	-	-
N(NTNV)	Highest	868.7MHz	-	-
	Lowest	867.1MHz	0	0
B(HTHV)	Highest	868.7MHz	0	0
	Lowest	867.1MHz	0	0
A(LTLV)	Highest	868.7MHz	0	0

7.2.6 TX Out Of Band Emissions

Test Requirement:	ETSI EN 300 220)-2 clau	se 4.3.5			
Test Method:	ETSI EN 300 220)-1 clau	se 5.8.3			
Receive setup:	Table 16: Test	Paramet	ters for Out Of E	Band for Opera	ating Channel	Measurement
		Spectrum Analyser Setting		Notes		
	Centre frequency		Operating Frequency			
	Span		6 x Operating			
	RBW		Channel width 1 kHz	Resolution ban	dwidth for Out O	f Band domain
	Detector Function		(see note) RMS	measurements		
	Trace Mode		Linear AVG	An appropriate	FEUT generating number of samp re a stable reading	
		Γ	Max Hold	Applies only for test signal.	r EUT generating	g D-M2a or D-M3
	NOTE: If the valu	e of RBW	used is different fr	om RBW _{REF} in c	lause 5.8.2, use	the bandwidth
	correction	n in clause	4.3.10.1.			
		Table 15	: Emission limits i	in the Out Of Ba	nd domains	
	Domain		Frequency Ran		RBW _{REF}	Max power limit
	Domain		f ≤ f _{low OFB} - 400	kHz	10 kHz	-36 dBm
		F _{low_OF}	$OEB - 400 \text{ kHz} \le f \le f_{low OEB} - 200 \text{ kHz}$		1 kHz	-36 dBm
	OOB limits applicable to Operational Frequency		$f = f_{low_OFB}$		1 kHz 1 kHz	See Figure 6 0 dBm
	Band		f = f _{high OFB}		1 kHz	0 dBm
	(See Figure 6)	F _{hi}	$F_{high, OEB} < f \le f_{high, OEB} + 200 \text{ kHz}$		1 kHz	See Figure 6
		F _{high_OF}	$high_OFB + 200 \text{ kHz} \le f \le f_{high_OFB} + 400 \text{ kHz}$		1 kHz	-36 dBm
Limit:			F _{high_OFB} + 400 kHz ≤ f f = f _c - 2.5 x OCW		10 kHz 1 kHz	-36 dBm -36 dBm
		f, -	$f_c = 2.5 \times OCW$ $f_c = 2.5 \times OCW \le f \le f_c = 0.5 \times OCW$		1 kHz	See Figure 5
	OOB limits applicable to		$f = f_c - 0.5 \times OCW$		1 kHz	0 dBm
	Operating Channel (See Figure 5)		$f = f_c + 0.5 \times OCW$		1 kHz	0 dBm
		f _c +	$f_c + 0.5 \times OCW \le f \le f_c + 2.5 \times OCW$ $f = f_c + 2.5 \times OCW$		1 kHz	See Figure 5
	NOTE: f is the measuren f _c is the Operatin Fundaments is the lo	ig Frequenc	ncy.	1	1 kHz	-36 dBm
	F _{high_OFB} is the u OCW is the open	upper edge	of the Operational Fre	equency Band.		
Test setup:	Spectrum	Analyz		E.U.T		
			Conducted Tabl			l
Test Procedure:	Refer to clause 5.			0220-1		
Test Instruments: Test mode:	Refer to section 6 Refer to section 5					
	Pass	010				
Test results:	F 033					

Measurement Data

Lowest channel and Highest channel

Domain	Frequency Range	Result
	f ≤ flow_OFB - 400 kHz	Pass
	F_{Iow_OFB} - 400 kHz $\leq f \leq f_{Iow_OFB}$ - 200 kHz	Pass
	fiow - 200 kHz ≤ f < fiow_OFB	Pass
OOB limits applicable to Operational Frequency	f = flow_OFB	Pass
Band	$f = fhigh_OFB$	Pass
	$Fhigh_OFB < f \le fhigh_OFB + 200 \text{ kHz}$	Pass
	Fhigh_OFB + 200 kHz ≤ f ≤ fhigh_OFB + 400 kHz	Pass
	$F_{high_OFB} + 400 \text{ kHz} \leq f$	Pass
	f = fc- 2.5 x OCW	Pass
	$f_c - 2,5 \times OCW \le f \le f_c - 0,5 \times OCW$	Pass
OOB limits applicable to	f = fc - 0,5 x OCW	Pass
Operating Channel	$f = fc + 0.5 \times OCW$	Pass
	$f_c + 0.5 \times OCW \le f \le f_c + 2.5 \times OCW$	Pass
	f = fc+ 2,5 x OCW	Pass

7.2.7 Transient power

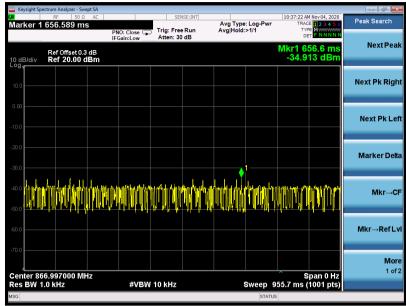
Test Requirement:	ETSI EN 300 220-2 Claus	se 4.3.6			
Test Method:	ETSI EN 300 220-1 Claus	se 5.10.3			
Limit:	Table	23: Transmitte	r Transient Pow	er limits	
	Absolute offset from centre frequency	RBW _{REF}	Peak power limit	t applicable at measu	rement points
	≤ 400 kHz	1 kHz		0 dBm	
	> 400 kHz	1 kHz		-27 dBm	
Test procedure:	The output of the EUT sh measuring equipment. The measurement shall b centre frequency shall be These offset values and t Table 24.	be undertak e set to an o their corres	en in zero sp ffset from the	oan mode. The e operating cen V configurations	analyser's tre frequenc
	Measurement points:				
	offset from centre frequency		Analyser RE	3W	RBW _{REF}
	-0,5 x OCW - 3 kHz 0,5 x OCW + 3 kHz Not applicable for OCW < 25 kHz		1 kHz		1kHz
	±12,5 kHz or ±OCW whichever is the greater	Max (RI	BW pattern 1, 3, 1 frequency/6 (see	/	1 kHz
	-0,5 x OCW - 400 kHz 0,5 x OCW + 400 kHz		100 kHz		1 kHz
	-0,5 x OCW -1 200 kHz 0,5 x OCW + 1 200 kHz		300 kHz		1 kHz
	3 kHz. The rest then the RBW v	Iz then the RBV of the analyser alue correspon	V value correspon settings are listed	ding to one OCW off in Table 25, and if C offset frequency is 30	set frequency is OCW is 250 kHz
	Spectrum Analyser Setting		lue	At higher RBW value	tes vs VBW may be
	VBW/RBW		0	clipped to its maximu	
	Sweep time	500) ms		
			ecian		
	RBW filter Trace Detector Function	Gau	ssian MS		
	RBW filter Trace Detector Function Trace Mode	Gaus RM Max	MS hold		
	RBW filter Trace Detector Function Trace Mode Sweep points	Gaus RM Max 50	MS hold 01		
	RBW filter Trace Detector Function Trace Mode	Gaus RI Max 50 Continuo mber of sweep p	MS hold D1 us sweep	ep time shall be the sa	me ratio as abov
	RBW filter Trace Detector Function Trace Mode Sweep points Measurement mode NOTE: The ratio between the nu different number of sweep The used modulation sha	Gaus RM Max 50 Continuo Imber of sweep p p points is used. All be D-M3.	MS hold D1 us sweep points and the sweet The analyse	er shall be set to	the setting
	RBW filter Trace Detector Function Trace Mode Sweep points Measurement mode NOTE: The ratio between the nu different number of sweep The used modulation shate Table 25 and a measurement	Gau: Rt Max 50 Continuo mber of sweep p p points is used. All be D-M3. ment shall b	MS hold D1 us sweep points and the sweet The analyse pe started for	er shall be set to each offset fre	the setting quency. The
	RBW filter Trace Detector Function Trace Mode Sweep points Measurement mode NOTE: The ratio between the nu different number of sweep The used modulation shated the transmit at lease Table 25 and a measurer EUT shall transmit at lease	Gau: Rt Max Continuo mber of sweep p p points is used. all be D-M3. ment shall b st five D-M3	MS hold D1 us sweep booints and the swee The analyse be started for B test signal.	er shall be set to each offset fre The peak value	the setting quency. The shall be
	RBW filter Trace Detector Function Trace Mode Sweep points Measurement mode NOTE: The ratio between the number of sweep The used modulation shat Table 25 and a measurer EUT shall transmit at lease recorded and the measurer	Gau: Rt Max Continuo mber of sweep p p points is used. all be D-M3. ment shall b st five D-M3	MS hold D1 us sweep booints and the swee The analyse be started for B test signal.	er shall be set to each offset fre The peak value	the setting quency. The shall be
	RBW filter Trace Detector Function Trace Mode Sweep points Measurement mode NOTE: The ratio between the nu different number of sweep The used modulation sha Table 25 and a measurer EUT shall transmit at lease recorded and the measurer mentioned in Table 24. The recorded power value	Gau: Rt Max Continuo mber of sweep p p points is used. All be D-M3. ment shall b st five D-M3 rement shall st five D-M3 rement shall	MS hold D1 us sweep booints and the sweet The analyse be started for 3 test signal. Il be repeated converted to	er shall be set to each offset fre The peak value d at each offset	o the setting quency. The shall be frequency
Measurement Record:	RBW filter Trace Detector Function Trace Mode Sweep points Measurement mode NOTE: The ratio between the nu different number of sweep The used modulation shat Table 25 and a measurer EUT shall transmit at least recorded and the measurer mentioned in Table 24.	Gau: Rt Max Continuo mber of sweep p p points is used. All be D-M3. ment shall b st five D-M3 rement shall st five D-M3 rement shall	MS hold D1 us sweep booints and the sweet The analyse be started for 3 test signal. Il be repeated converted to	er shall be set to each offset fre The peak value d at each offset power values r	o the setting: quency. The shall be frequency neasured in
Measurement Record: Test Instruments:	RBW filter Trace Detector Function Trace Mode Sweep points Measurement mode NOTE: The ratio between the nu different number of sweep The used modulation sha Table 25 and a measurer EUT shall transmit at lease recorded and the measurer mentioned in Table 24. The recorded power value	Gau: Rt Max Continuo Imber of sweep p p points is used. All be D-M3. ment shall be st five D-M3 rement shall st five D-M3 rement shall es shall be in clause 4	MS hold D1 us sweep booints and the sweet The analyse be started for 3 test signal. Il be repeated converted to	er shall be set to each offset fre The peak value d at each offset power values r	o the settings quency. The shall be frequency
	RBW filter Trace Detector Function Trace Mode Sweep points Measurement mode NOTE: The ratio between the nu different number of sweep The used modulation shat Table 25 and a measurement EUT shall transmit at least recorded and the measurementioned in Table 24. The recorded power value RBWREF by the formula	Gau: Rt Max 50 Continuo Imber of sweep p p points is used. All be D-M3. ment shall be st five D-M3 rement shall es shall be in clause 4 etails	MS hold D1 us sweep booints and the sweet The analyse be started for 3 test signal. Il be repeated converted to	er shall be set to each offset fre The peak value d at each offset power values r	o the setting: quency. The shall be frequency neasured in

Measurement Data

Lowest Channel:

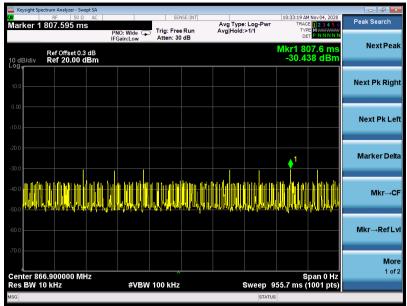
Frequency offset	Peak Power level (dBm)	Limit (dBm)	Result
F _c -0.5*OCW-1200kHz	-49.430	-27	
F _c -0.5*OCW-400kHz	-38.009	-27	
F _c -OCW	-30.438	0	
F _c -0.5*OCW-3kHz	-34.913	0	Pass
F _c +0.5*OCW+3kHz	-35.352	0	Pass
F _c +OCW	-30.362	0	
F _c +0.5*OCW+400kHz	-36.911	-27	
F _C +0.5*OCW+1200kHz	-49.389	-27	

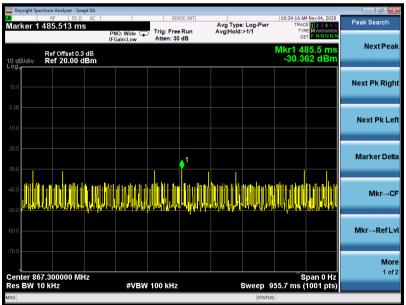
Highest Channel:


Frequency offset	Peak Power level (dBm)	Limit (dBm)	Result
F _c -0.5*OCW-1200kHz	-48.849	-27	
F _c -0.5*OCW-400kHz	-37.849	-27	
F _c -OCW	-30.869	0	
F _c -0.5*OCW-3kHz	-35.172	0	Pass
F _c +0.5*OCW+3kHz	-34.886	0	Fass
F _c +OCW	-30.190	0	
F _c +0.5*OCW+400kHz	-37.968	-27	
F _c +0.5*OCW+1200kHz	-48.182	-27	

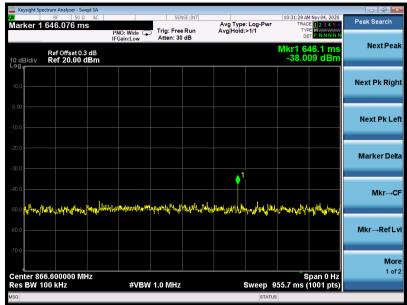
Note: OCW is 200kHz.

Lowset channel:


Report No.: GTS202010000055E02

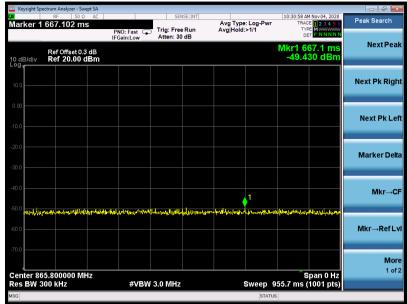

F_c-0.5*OCW-3kHz

🔤 Keysight Spe	ectrum Analyzer - Swept									
Marker 1	RF 50 Ω 512.273 ms	AC			ISE:INT		: Log-Pwr	TRAC	MNov 04, 2020	Peak Search
			D: Close 🖵 ain:Low	Trig: Free Atten: 30		Avg Hold:	>1/1	DE		
10 dB/div Log	Ref Offset 0.3 d Ref 20.00 dB	iB Sm						Mkr1 5 -35.3	12.3 ms 52 dBm	Next Peak
10.0										Next Pk Right
-10.0										Next Pk Lef
-20.0					1					Marker Delta
-40.0							M M			Mkr→CF
-60.0	1. na khall	• • • • • • • • • • • • • • • • • • •	1 1 1 1		t. I. Au	ավերքը թ	MI 1			Mkr→RefLv
-70.0 Center 86	7.203000 MHz	2						Ŷ	pan 0 Hz	More 1 of 2
Res BW 1			#VBW	10 kHz				55.7 ms (1001 pts)	
ISG							STATUS	;		


F_c+0.5*OCW+3kHz

F_c-OCW

F_c+OCW


F_c-0.5*OCW-400kHz

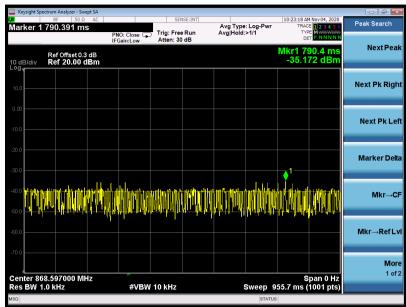
Keysight Spe	ectrum Analyzer - Swept SA					
Marker 1	RF 50 Ω AC 712.021 ms		SENSE:INT	Avg Type: Log-Pwi Avg Hold:>1/1	10:31:53 AM Nov 04, 2020 TRACE 2 3 4 5 6 TYPE M	
10 dB/div	Ref Offset 0.3 dB Ref 20.00 dBm	IFGain:Low A	Atten: 30 dB		Mkr1 712.0 ms -36.911 dBm	Next Peak
10.0						Next Pk Right
-10.0						Next Pk Left
-20.0				41		Marker Delta
-40.0	uad was the shall be a start	ليعليه الدينان المسالية	رور بالاروني مورد الدور معرف المرواني		ullyhan shiga ya shi a bisha	Mkr→CF
-60.0						Mkr→RefLvl
Center 86	57.600000 MHz 00 kHz	#VBW 1.	0 MHz	Sweep	Span 0 Hz 955.7 ms (1001 pts)	More 1 of 2
MSG				STAT		

F_c+0.5*OCW+400kHz

GTS

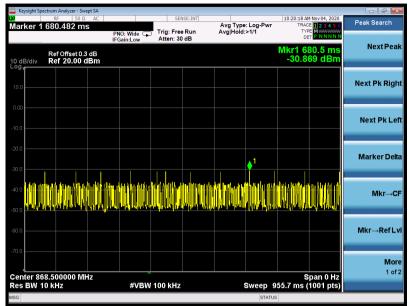
Report No.: GTS202010000055E02

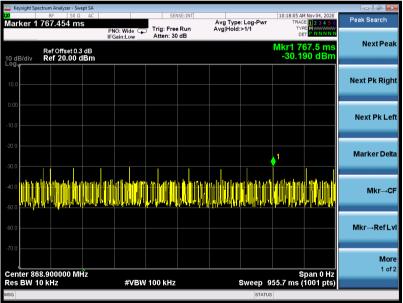
F_c-0.5*OCW-1200kHz


Keysight Spe	ectrum Analyzer - Swept SA					
Marker 1	RF 50 Ω AC 97.4848 ms	PNO: Fast 😱 Trig: Free	Run Avg Ho	pe: Log-Pwr ld:>1/1	10:30:14 AM Nov 04, 2020 TRACE 1 2 3 4 5 6 TYPE MWWWWWW DET P N N N N N	Peak Search
10 dB/div	Ref Offset 0.3 dB Ref 20.00 dBm	IFGain:Low Atten: 30) dB		Mkr1 97.48 ms -49.389 dBm	Next Peak
10.0						Next Pk Right
-10.0						Next Pk Lef
-20.0						Marker Delta
40.0	1					Mkr→Cf
60.0	lugardilluntadhiddathillifarddiada	dis Pomphaniscopy and provide strategy and an	fragelolisation, et al appendix and a second	anna an Inna ann ann ann ann ann ann ann	and consider of the product of the p	Mkr→RefLv
Center 86	68.400000 MHz	#VBW 3.0 MHz		Sweep_9	Span 0 Hz 55.7 ms (1001 pts)	More 1 of 2
ISG				STATUS		

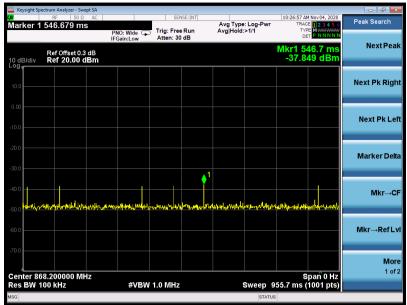
F_c+0.5*OCW+1200kHz

Highest channel


Report No.: GTS202010000055E02

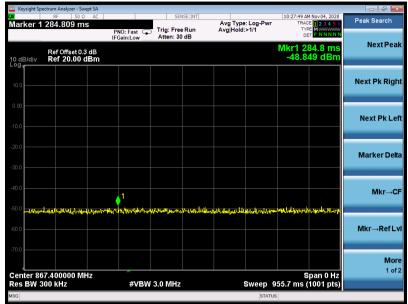

F_c-0.5*OCW-3kHz

Keysight Specific Keysight	ectrum Analyzer - Swept SA								
Marker 1	RF 50 Ω AC 618.359 ms		SENSE		Avg Type	Log-Pwr	TRAC	MNov 04, 2020	Peak Search
		PNO: Close 😱 IFGain:Low	Trig: Free F Atten: 30 d		Avg Hold:	>1/1	TYF		
10 dB/div	Ref Offset 0.3 dB Ref 20.00 dBm						Mkr1 6 -34.8	18.4 ms 86 dBm	Next Peak
10.0									Next Pk Right
-10.0									Next Pk Left
-20.0					1_				Marker Delta
-40.0									Mkr→CF
-60.0	ted of the scholar b	al the state of the t		n lle lu	1	L. A. AM			Mkr→RefLvl
-70.0	\$8.803000 MHz						s	pan 0 Hz	More 1 of 2
Res BW 1		#VBW	10 kHz		\$		955.7 ms (1001 pts)	
MSG						STATU	JS		


F_c+0.5*OCW+3kHz

 F_{c} -OCW

F_c+OCW


F_c-0.5*OCW-400kHz

🔤 Keysight Spec	trum Analyzer - Swept SA							
Marker 1	RF 50 Ω AC 276.207 ms		SENSE:INT	Avg Type		04:15:38 PM N TRACE	ov 04, 2020	Peak Search
			Atten: 30 dB	Avg Hold:	>1/1	DET	PNNNNN	Next Peak
10 dB/div	Ref Offset 0.3 dB Ref 20.00 dBm					Mkr1 276 -37.986	6.2 ms 6 dBm	NextPeak
Log								Next Pk Right
10.0								NEXL PK RIGHL
0.00								
-10.0								Next Pk Left
-20.0								
-30.0								Marker Delta
		∮ ¹						
-40.0								Mkr→CF
-50.0 Movedant	nankina prokina kalanda singa	and the second of the second o	hours about	erfreligt har manifektant	North An	www.waterland	edddynad -	
-60.0								Mkr→RefLvl
-70.0								
								More 1 of 2
Center 869 Res BW 10	9.200000 MHz 00 kHz	#VBW 1	.0 MHz	s	weep 9	Sp: 955.7 ms (10	an 0 Hz)01 pts)	1012
MSG					STATU	s		

F_c+0.5*OCW+400kHz

GTS

Report No.: GTS202010000055E02

F_c-0.5*OCW-1200kHz

🔤 Keysight Spe	ectrum Analyzer - Swept SA					- 3 ×
<mark>%</mark> Marker 1	RF 50 Ω AC 836.267 ms	PNO: Fast 😱 Trig: Fre	eRun Av	/g Type: Log-Pwr g Hold:>1/1	10:29:07 AM Nov 04, 2020 TRACE 1 2 3 4 5 6 TYPE M	Peak Search
10 dB/div Log	Ref Offset 0.3 dB Ref 20.00 dBm	IFGain:Low Atten: 30	0 dB		Mkr1 836.3 ms -48.182 dBm	Next Peak
10.0						Next Pk Right
0.00 -10.0						Next Pk Lef
-20.0						Marker Delta
40.0	hadraandraghaandraagha-phaapaga	lite. And weeks had not not some		ohanha tuanka ka ihak	at a state of the	Mkr→Cl
60.0						Mkr→RefLv
Center 87	0.000000 MHz	#VBW 3.0 MHz		Sweep 9	Span 0 Hz 55.7 ms (1001 pts)	More 1 of 2
ISG				STATUS		

F_c+0.5*OCW+1200kHz

rest Requirement.	LISI LIN 300 220-2 Oldu	36 4.2.2				
Test Method:	ETSI EN 300 220-1 Clau	se 5.9.1.2				
	Table 20: Para	meters for TX Spurious Radiation	ons Measurement			
	Operating Mode	Frequency Range	RBW _{REF} (see note 2)			
	Transmit mode	9 kHz ≤ f < 150 kHz	z 1 kHz			
		150 kHz ≤ f < 30 MH				
		$30 \text{ MHz} \le f \le f_c - m$				
		$f_c - m \le f < f_c - n$	10 kHz			
		$f_c - n \le f \le f_c - p$	1 kHz			
Receiver setup:		$f_c + p < f \le f_c + n$	1 kHz			
Receiver setup.		$f_c + n < f \le f_c + m$	10 kHz			
		f _c + m < f ≤ 1 GHz	100 kHz			
		1 GHz < f ≤ 6 GHz	1 MHz			
	$\begin{array}{rllllllllllllllllllllllllllllllllllll$	cy. , whichever is the greater.	_{REF} , use bandwidth correction from			
Test Frequency range:	25MHz to 6GHz					
Limit:	Frequency	Limit(operation)	Limit(standby)			
	47 MHz to 74 MHz					
	87.5 MHz to 118 MHz					
	174 MHz to 230 MHz	4nW(-54dBm)	2nW(-57dBm)			
	470 MHz to 790 MHz					
	Other frequencies					
	below 1000 MHz	250nW(-36dBm)	2nW(-57dBm)			
	Above 1000 MHz	1\// 20dDm)	20nM(47dBm)			
		1uW(-30dBm)	20nW(-47dBm)			
Test setup:	Below 1GHz		7			
	AE EUT (Turntable) Test Receiver	Antenna Tower				

ETSI EN 300 220-2 Clause 4.2.2

7.2.8 Transmit spurious emissions

Test Requirement:

Above 1GHz

Report No.: GTS202010000055E02

	Report No., G1 5202010000055E02
	Horn Anterna Horn Anterna Test Receiver
Test procedure:	Substitution method was performed to determine the actual ERP emission levels of the EUT. The following test procedure as below:
	Below 1GHz:
	 On the test site as test setup graph above, the EUT shall be placed at the 1.5m support on the turntable and in the position closest to normal use as declared by the provider.
	2. The test antenna shall be oriented initially for vertical polarization and shall be chosen to correspond to the frequency of the transmitter. The output of the test antenna shall be connected to the measuring receiver.
	3. The transmitter shall be switched on, if possible, without modulation and the measuring receiver shall be tuned to the frequency of the transmitter under test.
	4. The test antenna shall be raised and lowered from 1m to 4m until a maximum signal level is detected by the measuring receiver. Then the turntable should be rotated through 360° in the horizontal plane, until the maximum signal level is detected by the measuring receiver.
	5. Repeat step 4 for test frequency with the test antenna polarized horizontally.
	6. Remove the transmitter and replace it with a substitution antenna (the antenna should be half-wavelength for each frequency involved). The center of the substitution antenna should be approximately at the same location as the center of the transmitter. At the lower frequencies, where the substitution antenna is very long, this will be impossible to achieve when the antenna is polarized vertically. In such case the lower end of the antenna should be 0.3 m above the ground.
	7. Feed the substitution antenna at the transmitter end with a signal generator connected to the antenna by means of a nonradiating cable. With the antennas at both ends vertically polarized, and with the signal generator tuned to a particular test frequency, raise and lower the test antenna to obtain a maximum reading at the spectrum analyzer. Adjust the level of the signal generator output until the previously recorded maximum reading for this set of conditions is obtained. This should be done carefully repeating the adjustment of the test antenna and generator output.
	8. Repeat step 7 with both antennas horizontally polarized for each test frequency.
	9. Calculate power in dBm into a reference ideal half-wave dipole antenna by reducing the readings obtained in steps 7 and 8 by the power loss in

	Report No.: GTS202010000055E02
	the cable between the generator and the antenna, and further corrected for the gain of the substitution antenna used relative to an ideal half-wave dipole antenna by the following formula:
	ERP(dBm) = Pg(dBm) – cable loss (dB) + antenna gain (dBi)
	where:
	Pg is the generator output power into the substitution antenna.
	Above 1GHz:
	Different between above is the test site, change from Semi- Anechoic Chamber to fully Anechoic Chamber, and the test antenna do not need to raise from 1 to 4m, just test in 1.5m height.
Measurement Record:	Uncertainty: 4.64dB
Test Instruments:	Refer to section 6.0 for details
Test mode:	Refer to section 5.2 for details
Test results:	Pass

Measurement Data

		The lowest chan	nel			
	Spurious	Emission		Test Desult		
Frequency (MHz)	polarization	Level(dBm)	Limit (dBm)	Test Result		
86.63	Vertical	-69.86	-36.00			
446.74	V	-66.30	-36.00			
1734.20	V	-42.10	-30.00			
2601.30	V	-44.74	-30.00			
3468.40	V	-41.29	-30.00			
4335.50	V	-42.41	-30.00	Deee		
169.92	Horizontal	-68.62	-36.00	- Pass		
637.31	Н	-64.20	-54.00			
1734.20	Н	-44.39	-30.00			
2601.30	Н	-44.87	-30.00			
3468.40	Н	-41.71	-30.00			
4335.50	Н	-43.67	-30.00			
		The highest char	nel			
	Spurious	Emission	Limit (dDm)	Teet Deeult		
Frequency (MHz)	polarization	Level(dBm)	Limit (dBm)	Test Result		
134.98	Vertical	-71.30	-36.00			
603.33	V	-62.62	-54.00			
1737.40	V	-42.61	-30.00			
2606.10	V	-44.21	-30.00			
3474.80	V	-42.97	-30.00			
4343.50	V	-42.53	-30.00	Dava		
249.76	Horizontal	-68.68	-36.00	– Pass		
809.35	Н	-61.69	-54.00	7		
1737.40	Н	-43.75	-30.00			
2606.10	Н	-44.65	-30.00			
	Н	-42.88	-30.00			
3474.80		-42.00	-30.00			

7.3 Receiver Requirements

Receiver Classification,	Table 1 of ETSI EN 300 220-1.		
Rx Class	Risk assessment of Rx performance		
1	Category 1 is a high performance level of receiver. In particular to be used where the operation of a SRD may have		
	inherent safety of human life implications.		
1.5	Category 1.5 is an improved performance level of receiver		
	category 2.		
2	Category 2 is standard performance level of receiver.		
3	Category 3 is a low performance level of receiver. Manufacturers have to be aware that category 3 receivers are not able to work properly in case of coexistence with some services such as a mobile radio service in adjacent bands. The manufacturer shall provide another mean to overcome the weakness of the radio link or accept the failure.		
NOTE: The receiver ca equipment. Receiver c	ategory should be stated in both the test report and in the user's manual for the category 3 will be withdrawn after December 31 st , 2018.		
The EUT (Receiver part) belong to Category 2 with no Polite spectrum access function.			
7.3.1 Receiver sensitivity			

Not applicable, since the test applied to Polite spectrum access equipment.

7.3.2 Clear Channel Assessment threshold

Not applicable, since the test applied to Polite spectrum access equipment.

7.3.3 Polite spectrum access timing parameters

Not applicable, since the test applied to Polite spectrum access equipment.

7.3.4 Adaptive Frequency Agility

Not applicable, since the test applied to AFA quipment.

7.3.5 Adjacent channel selectivity

Not applicable, since the test applied to Category 1 equipment.

7.3.6 Receiver saturation at Adjacent Channel

Not applicable, since the test applied to Category 1 equipment.

7.3.7 Spurious response rejection

Not applicable, since the test applied to Category 1 equipment.

7.3.8 Behaviour at high wanted signal level

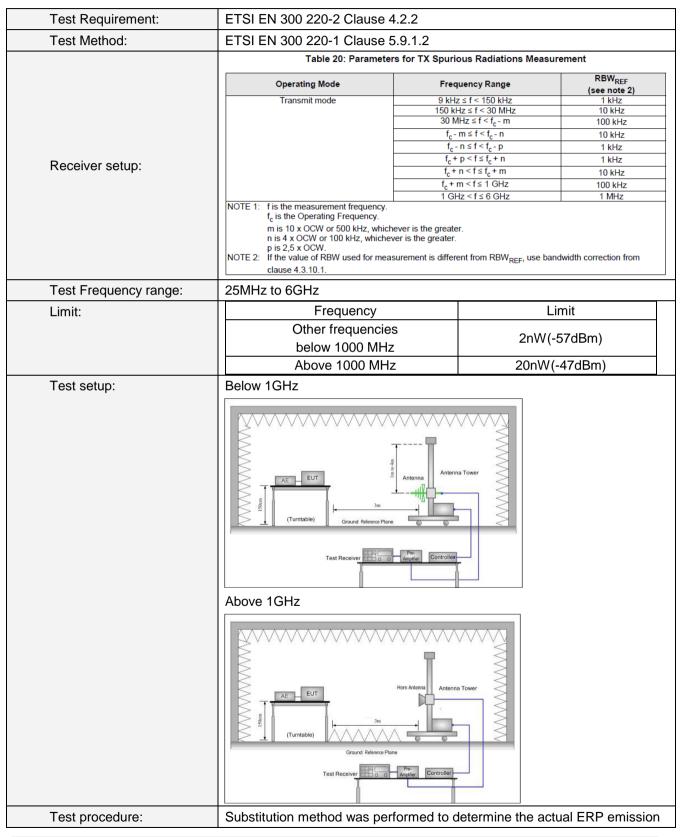
Not applicable, since the test applied to Category 1 equipment.

7.3.9 Bi-Directional Operation Verification

Not applicable, since this product is not support Bi-Directional operation function.

7.3.10 Blocking

Test Requirement:	ETSI EN 300 220-2 Clause 4.4.2	ETSI EN 300 220-2 Clause 4.4.2			
Test Method:	ETSI EN 300 220-1 clause 5.18	ETSI EN 300 220-1 clause 5.18			
Limit:	Table 43: Blocking level para	Table 43: Blocking level parameters for RX category 1			
Ennit.	Requirement Limits				
		Receiver category 1			
	Blocking at ±2 MHz from Centre Frequency	≥ -20 dBm			
	Blocking at ±10 MHz from Centre Frequency	≥ -20 dBm			
	Blocking at ±5 % of Centre Frequency or 15 MHz, whichever is the greater	≥ -20 dBm			
	Table 42: Blocking level parameters for RX category 1.5				
	Requirement				
		Receiver category 1.5			
	Blocking at ±2 MHz from OC edge fhigh and flow	≥ -43 dBm			
	Blocking at ±10 MHz from OC edge f _{high} and f _{low}	≥ -33 dBm			
	Blocking at ±5 % of Centre Frequency or 15 MHz, whichever is the greater	≥ -33 dBm			
	Table 41: Blocking level parameters for RX category 2				
	Requirement	Limits			
	Disabing at 12 Mile form 0.0 stor for sold	Receiver category 2			
	Blocking at ±2 MHz from OC edge f _{high} and f _{low}	≥ -69 dBm			
	Blocking at ±10 MHz from OC edge f _{high} and f _{low}	≥ -44 dBm			
	Blocking at ±5 % of Centre Frequency or 15 MHz, whichever is the greater	≥ -44 dBm			
	Table 40: Blocking level para	meters for RX category 3			
	Requirement	Limits			
	Blocking at ±2 MHz from OC edge f _{high} and f _{low}	Receiver category 3			
	Blocking at ±10 MHz from OC edge f _{high} and f _{low}	≥ -80 dBm			
	Blocking at ±5 % of Centre Frequency or 15 MHz,	≥ -60 dBm ≥ -60 dBm			
	whichever is the greater				
	A = 10 log (BW _{kHz} / 16 kHz) BW is the r	eceiver bandwidth			
Test setup:	Signal Generator A				
	Combiner Combiner				
	Signal Generator B				
Test procedure:	1. Two signal generators A and B shall be connected to the receiver via a combining network to the receiver antennaconnector.				
	2. Signal generator A shall be at the nominal frequency of the receiver, with normal modulation of the wanted signal. Signal generator B shall be unmodulated.				
	3. Measurements shall be carried out at frequencies of the unwanted signal at approximately ±2 MHz and ±10 MHz, avoiding those frequencies at which spurious responses occur.				
	4. Initially signal generator B shall be switched off and using signal generator A the level which still gives sufficient response shall be established, however, the level at the receiver input shall not be adjusted below the sensitivity limit given in clause 8.1.4. The output level of generator A shall then be increased by 3 dB.				
	5. Signal generator B is then switched on and adjusted until the wanted criteria (see clause 8.1.1) is just exceeded. With signal generator B settings unchanged the power into the receiver is measured by replacing the receiver with a power meter or spectrum analyzer. This level shall be recorded. Alternatively, equipment having a dedicated or integral				


	Report No.: GTS202010000055E02
	antenna may use a radiated measurement setup. For this, a test site from clause A.1 shall be selected and the requirements from clauses A.2 and A.3 apply.
	6. Signal generators A and B together with a combiner shall be placed outside the anechoic chamber and a TX test antenna shall be placed with the EUT's antenna polarisation. The EUT shall be placed at the location of the turntable at the orientation of the most sensitive position. Generator A shall be set in order to reach the EUT sensitivity limit +3 dB.
	 The procedure shall be the same as for the conducted measurement. Bloking is the difference between signal generator B and signal generator A levels.
Test Instruments:	Refer to section 6.0 for details
Test mode:	Refer to section 5.2 for details
Test results:	Pass

Measurement data:

Receiver Category	Frequency Offset	Value(dBm)	Limit(dBm)	Result
2	+2MHz	-36	-69	Pass
2	-2MHz	-35	-69	Pass
2	+10MHz	-35	-44	Pass
2	-10MHz	-34	-44	Pass
2	+21.7MHz	-21	-44	Pass
2	-21.7MHz	-21	-44	Pass

7.3.11 Spurious emissions

Global United Technology Services Co., Ltd. No. 123-128, Tower A, Jinyuan Business Building, No.2, Laodong Industrial Zone, Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102 Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960 levels of the EUT. The following test procedure as below:

Below 1GHz:

	Below Tonz.
	1. On the test site as test setup graph above, the EUT shall be placed at the 1.5m support on the turntable and in the position closest to normal use as declared by the provider.
	 The test antenna shall be oriented initially for vertical polarization and shall be chosen to correspond to the frequency of the transmitter. The output of the test antenna shall be connected to the measuring receiver. The transmitter shall be switched on, if possible, without modulation and the measuring receiver shall be tuned to the frequency of the transmitter under test.
	4. The test antenna shall be raised and lowered from 1m to 4m until a maximum signal level is detected by the measuring receiver. Then the turntable should be rotated through 360° in the horizontal plane, until the maximum signal level is detected by the measuring receiver.
	5. Repeat step 4 for test frequency with the test antenna polarized horizontally.
	6. Remove the transmitter and replace it with a substitution antenna (the antenna should be half-wavelength for each frequency involved). The center of the substitution antenna should be approximately at the same location as the center of the transmitter. At the lower frequencies, where the substitution antenna is very long, this will be impossible to achieve when the antenna is polarized vertically. In such case the lower end of the antenna should be 0.3 m above the ground.
	7. Feed the substitution antenna at the transmitter end with a signal generator connected to the antenna by means of a nonradiating cable. With the antennas at both ends vertically polarized, and with the signal generator tuned to a particular test frequency, raise and lower the test antenna to obtain a maximum reading at the spectrum analyzer. Adjust the level of the signal generator output until the previously recorded maximum reading for this set of conditions is obtained. This should be done carefully repeating the adjustment of the test antenna and generator output.
	 Repeat step 7 with both antennas horizontally polarized for each test frequency.
	 9. Calculate power in dBm into a reference ideal half-wave dipole antenna by reducing the readings obtained in steps 7 and 8 by the power loss in the cable between the generator and the antenna, and further corrected for the gain of the substitution antenna used relative to an ideal half-wave dipole antenna by the following formula: ERP(dBm) = Pg(dBm) – cable loss (dB) + antenna gain (dBd)
	where:
	Pg is the generator output power into the substitution antenna.
	Above 1GHz:
	Different between above is the test site, change from Semi- Anechoic Chamber to fully Anechoic Chamber, and the test antenna do not need to raise from 1 to 4m, just test in 1.5m height.
Measurement Record:	Uncertainty: 4.64dB
Test Instruments:	Refer to section 6.0 for details
Test mode:	Refer to section 5.2 for details
Test results:	Pass

Global United Technology Services Co., Ltd.

No. 123-128, Tower A, Jinyuan Business Building, No.2, Laodong Industrial Zone, Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102 Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

Measurement Data

	The lowest channel					
Frequency (MHz)	Spurious	Emission		Test Result		
	polarization	Level(dBm)	Limit (dBm)	Test Result		
117.79	Vertical	-68.03				
729.71	V	-71.82				
1734.20	V	-63.19				
2601.30	V	-56.47	2nW/ -57dBm			
3468.40	V	-52.84	below 1GHz,			
4335.50	V	-53.01		Pass		
168.25	Horizontal	-67.07	20nW/ -47dBm	Pass		
843.34	Н	-71.11	above 1GHz.			
1734.20	Н	-61.50				
2601.30	Н	-57.35				
3468.40	Н	-54.79				
4335.50	Н	-52.55				
		The highest cha	annel			
Frequency (MHz)	Spurious	Emission	Limit (dBm)	Test Result		
r requercy (wriz)	polarization	Level(dBm)	Linin (abin)	Test Result		
309.50	Vertical	-68.94				
594.08	V	-71.41				
1737.40	V	-62.68				
2606.10	V	-57.92	2nW/ -57dBm			
3474.80	V	-54.18	below 1GHz,			
4343.50	V	-53.07		Pass		
368.55	Horizontal	-67.84	20nW/ -47dBm	Pass		
609.01	Н	-71.25	above 1GHz.			
1737.40	Н	-61.68				
2606.10	Н	-56.39				
3474.80	Н	-54.16				
4343.50	Н	-52.70				

8 Test Setup Photo

Reference to the **appendix I** for details.

9 EUT Constructional Details

Reference to the **appendix II** for details.

-----End------