

Global United Technology Services Co., Ltd.

Report No.: GTS202005000116E02

TEST REPORT

Dragino Technology Co., Limited **Applicant:**

Room 202, Block B, BCT Incubation Bases (BaoChengTai), No.8 **Address of Applicant:**

CaiYunRoad LongCheng Street, LongGang District; Shenzhen

518116, China

Dragino Technology Co., Limited Manufacturer:

Room 202, Block B, BCT Incubation Bases (BaoChengTai), No.8 Address of

CaiYunRoad LongCheng Street, LongGang District; Shenzhen

518116, China

Equipment Under Test (EUT)

Manufacturer:

Product Name: LoRaWAN Sensor Node

LSN50 v2 Model No.:

Trade Mark: Dragino

ETSI EN 300 220-1 V3.1.1 (2017-02) **Applicable standards:**

ETSI EN 300 220-2 V3.2.1 (2018-06)

Date of sample receipt: May 12, 2020

Date of Test: May 13, 2020- May 29, 2020

May 31, 2020 Date of report issue:

PASS * Test Result:

*In the configuration tested, the EUT complied with the standards specified above.

The CE mark as shown below can be used, under the responsibility of the manufacturer, after completion of an EC Declaration of Conformity and compliance with all relevant EC Directives. The protection requirements with respect to electromagnetic compatibility contained in Directive 2014/53/EU are considered.

Robinson Lo **Laboratory Manager**

2 Version

Version No.	Date	Description
00	May 31, 2020	Original

Prepared By:	Joseph Cu	Date:	May 31, 2020	
	Project Engineer			
Check By:	Reviewer	<i>Date:</i>	May 31, 2020	

Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102 Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

3 Contents

			Page
1	COVER	R PAGE	1
2	VERSIC	ON	2
_	VEINOIC	<u> </u>	Z
3	CONTE	NTS	3
4	TEST S	SUMMARY	4
5	GENER	RAL INFORMATION	5
	5.1 G	ENERAL DESCRIPTION OF EUT	5
		EST MODE	
		EST FACILITY	
		EST LOCATION	
		ESCRIPTION OF SUPPORT UNITS	
		EVIATION FROM STANDARDS	
	5.7 AE	BNORMALITIES FROM STANDARD CONDITIONS	7
		THER INFORMATION REQUESTED BY THE CUSTOMER	
6	TEST II	NSTRUMENTS LIST	8
_	DADIO	TECHNICAL DECLIDEMENTS OFFICIALISM IN ETCLEM 200 220 2	40
7		TECHNICAL REQUIREMENTS SPECIFICATION IN ETSI EN 300 220-2	
		EST CONDITIONS	
		RANSMITTER REQUIREMENT	
	7.2.1 7.2.2	Operation Frequency	
	7.2.2 7.2.3	Effective Radiated Power Duty Cycle	
	7.2.3 7.2.4	Occupied Bandwidth	
	7.2. 4 7.2.5	TX Out Of Band Emissions	
	7.2.5 7.2.6	Transient power	
		Adaptive Power Control	
	7.2.7	Transmit spurious emissions	
		ECEIVER REQUIREMENTS.	
	7.3.1	Receiver sensitivity	
	7.3.2	Clear Channel Assessment threshold	
	7.3.3	Polite spectrum access timing parameters	
	7.3.4	Adaptive Frequency Agility	
		Adjacent channel selectivity	
	7.3.6	Receiver saturation at Adjacent Channel	27
	7.3.7	Spurious response rejection	
	7.3.8	Behaviour at high wanted signal level	27
	7.3.9	Bi-Directional Operation Verification	
	7.3.10	Blocking	
	7.3.11	Spurious emissions	
8	TEST S	, SETUP PHOTO	
,	0. 0	,	
a	EUT CC	ONSTRUCTIONAL DETAILS	22

4 Test Summary

Ra	dio Spectrum Matter	(RSM) Part of Tx		
Test item	Test Requirement	Test method	Limit/Severity	Result
Operating frequency	ETSI EN 300 220-2	ETSI EN 300 220-1	Annexes B or C of EN 300 220-2	Pass
Effective Radiated Power	ETSI EN 300 220-2	ETSI EN 300 220-1	Annexes B or C of EN 300 220-2	Pass
Maximum e.r.p. Spectral Density	ETSI EN 300 220-2	ETSI EN 300 220-1	Annexes B or C of EN 300 220-2	N/A
Duty cycle	ETSI EN 300 220-2	ETSI EN 300 220-1	Annexes B or C of EN 300 220-2	Pass
Occupied Bandwidth	ETSI EN 300 220-2	ETSI EN 300 220-1	Annexes B or C of EN 300 220-2	Pass
Frequency Error	ETSI EN 300 220-2	ETSI EN 300 220-1	Clause 5.7	N/A
Tx Out of Band Emissions	ETSI EN 300 220-2	ETSI EN 300 220-1	Clause 5.8.2	Pass
Transmit Spurious Emmisions	ETSI EN 300 220-2	ETSI EN 300 220-1	Clause 5.9.2	Pass
Transient Power	ETSI EN 300 220-2	ETSI EN 300 220-1	Clause 5.10.2	Pass
Adjacent Channel Power	ETSI EN 300 220-2	ETSI EN 300 220-1	Clause 5.11.2	N/A
TX behaviour under Low Voltage Conditions	ETSI EN 300 220-2	ETSI EN 300 220-1	Clause 5.12.2	Pass
Adaptive Power Control	ETSI EN 300 220-2	ETSI EN 300 220-1	Clause 5.13.2	N/A
Short Term Behaviour	ETSI EN 300 220-2	N/A	annex C, table C.1	N/A
FHSS Equipment Requirements	ETSI EN 300 220-2	N/A	Clause 4.3.10.2	N/A
Ra	dio Spectrum Matter	(RSM) Part of Rx		
Test item	Test Requirement	Test method	Limit/Severity	Result
Receiver sensitivity	ETSI EN 300 220-2	ETSI EN 300 220-1	Clause 5.14.2	N/A
Adjacent channel selectivity	ETSI EN 300 220-1	ETSI EN 300 220-1	Clause 5.15.2	N/A
Receiver saturation at Adjacent Channel	ETSI EN 300 220-1	ETSI EN 300 220-1	Clause 5.16.2	N/A
Spurious response rejection	ETSI EN 300 220-1	ETSI EN 300 220-1	Clause 5.17.2	N/A
Blocking	ETSI EN 300 220-2	ETSI EN 300 220-1	Clause 5.18.2	Pass
Behaviour at high wanted signal level	ETSI EN 300 220-1	ETSI EN 300 220-1	Clause 5.19.2	N/A
Clear Channel Assessment threshold	ETSI EN 300 220-2	ETSI EN 300 220-1	Clause 5.21.2.2	N/A
Polite spectrum access timing parameters	ETSI EN 300 220-2	ETSI EN 300 220-1	Clause 5.21.3.1	N/A
Adaptive Frequency Agility	ETSI EN 300 220-2	N/A	N/A	N/A
Receive Spurious emmisions	ETSI EN 300 220-2	ETSI EN 300 220-1	Clause 5.9.2	Pass
	· ·	ETSI EN 300 220-1	Clause 5.22.2	N/A

Pass: The EUT complies with the essential requirements in the standard.

N/A: not applicable.

5 General Information

5.1 General Description of EUT

•	
Product Name:	LoRaWAN Sensor Node
Model No.:	LSN50 v2
Operation Frequency:	863MHz-870MHz
Occupied bandwidth	200kHz
Number of Channels:	35
Modulation type:	External antenna
Antenna type:	FSK
Antenna Gain:	2.00dBi
Power supply:	DC 3.6V Lithium Battery

5.2 Test mode

Transmitting mode	Keep the EUT in continuously transmitting mode
Receiving mode	Keep the EUT in continuously receiving mode

Operation Frequency each of channel							
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	863.1MHz	10	864.7MHz	19	866.7MHz	28	868.5MHz
2	863.3MHz	11	864.9MHz	20	866.9MHz	29	868.7MHz
• !	. :		•	•			
8	864.5MHz	17	866.3MHz	26	868.1MHz	35	869.9MHz
9	864.7MHz	18	866.5MHz	27	868.3MHz		

Test Channel	Frequency(MHz)
Lowest channel	863.1
Middle channel	866.5
Highest channel	869.9

5.3 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC —Registration No.: 381383

Global United Technology Services Co., Ltd., Shenzhen EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in files. Registration 381383.

• IC —Registration No.: 9079A

The 3m Semi-anechoic chamber of Global United Technology Services Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 9079A

• NVLAP (LAB CODE:600179-0)

Global United Technology Services Co., Ltd., is accredited by the National Voluntary Laboratory Accreditation Program (NVLAP). LAB CODE:600179-0

5.4 Test Location

All tests were performed at:

Global United Technology Services Co., Ltd.

Address: No. 123-128, Tower A, Jinyuan Business Building, No.2, Laodong Industrial Zone, Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102

Tel: 0755-27798480 Fax: 0755-27798960

5.5 Description of Support Units

None

5.6 Deviation from Standards

None

Global United Technology Services Co., Ltd.

No. 123-128, Tower A, Jinyuan Business Building, No.2, Laodong Industrial Zone,

Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102

5.7 Abnormalities from Standard Conditions

None

5.8 Other Information Requested by the Customer

None

6 Test Instruments list

Radi	Radiated Emission:							
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)		
1	3m Semi- Anechoic Chamber	ZhongYu Electron	9.2(L)*6.2(W)* 6.4(H)	GTS250	July. 03 2015	July. 02 2020		
2	Control Room	ZhongYu Electron	6.2(L)*2.5(W)* 2.4(H)	GTS251	N/A	N/A		
3	EMI Test Receiver	Rohde & Schwarz	ESU26	GTS203	June. 26 2019	June. 25 2020		
4	BiConiLog Antenna	SCHWARZBECK MESS-ELEKTRONIK	VULB9163	GTS214	June. 26 2019	June. 25 2020		
5	Double -ridged waveguide horn	SCHWARZBECK MESS-ELEKTRONIK	BBHA 9120 D	GTS208	June. 26 2019	June. 25 2020		
6	Horn Antenna	ETS-LINDGREN	3160	GTS217	June. 26 2019	June. 25 2020		
7	EMI Test Software	AUDIX	E3	N/A	N/A	N/A		
8	Coaxial Cable	GTS	N/A	GTS213	June. 26 2019	June. 25 2020		
9	Coaxial Cable	GTS	N/A	GTS211	June. 26 2019	June. 25 2020		
10	Coaxial cable	GTS	N/A	GTS210	June. 26 2019	June. 25 2020		
11	Coaxial Cable	GTS	N/A	GTS212	June. 26 2019	June. 25 2020		
12	Amplifier(100kHz-3GHz)	HP	8347A	GTS204	June. 26 2019	June. 25 2020		
13	Amplifier(2GHz-20GHz)	HP	84722A	GTS206	June. 26 2019	June. 25 2020		
14	Amplifier (18-26GHz)	Rohde & Schwarz	AFS33-18002 650-30-8P-44	GTS218	June. 26 2019	June. 25 2020		
15	Band filter	Amindeon	82346	GTS219	June. 26 2019	June. 25 2020		
16	Power Meter	Anritsu	ML2495A	GTS540	June. 26 2019	June. 25 2020		
17	Power Sensor	Anritsu	MA2411B	GTS541	June. 26 2019	June. 25 2020		
18	Wideband Radio Communication Tester	Rohde & Schwarz	CMW500	GTS575	June. 26 2019	June. 25 2020		
19	Splitter	Agilent	11636B	GTS237	June. 26 2019	June. 25 2020		
20	Loop Antenna	ZHINAN	ZN30900A	GTS534	June. 26 2019	June. 25 2020		
21	Breitband hornantenne	SCHWARZBECK	BBHA 9170	GTS579	Oct. 19 2019	Oct. 18 2020		
22	Amplifier	TDK	PA-02-02	GTS574	Oct. 19 2019	Oct. 18 2020		
23	Amplifier	TDK	PA-02-03	GTS576	Oct. 19 2019	Oct. 18 2020		
24	PSA Series Spectrum Analyzer	Rohde & Schwarz	FSP	GTS578	June. 26 2019	June. 25 2020		

Gene	General used equipment:							
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)		
1	Humidity/ Temperature Indicator	KTJ	TA328	GTS243	June. 26 2019	June. 25 2020		
2	Barometer	ChangChun	DYM3	GTS255	June. 26 2019	June. 25 2020		

RF C	onducted:					
Item	Test Equipment	Manufacturer	Model No.	Serial No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)
1	MXA Signal Analyzer	Agilent	N9020A	GTS566	June. 26 2019	June. 25 2020
2	EMI Test Receiver	R&S	ESCI 7	GTS552	June. 26 2019	June. 25 2020
3	Spectrum Analyzer	Agilent	E4440A	GTS533	June. 26 2019	June. 25 2020
4	MXG vector Signal Generator	Agilent	N5182A	GTS567	June. 26 2019	June. 25 2020
5	ESG Analog Signal Generator	Agilent	E4428C	GTS568	June. 26 2019	June. 25 2020
6	USB RF Power Sensor	DARE	RPR3006W	GTS569	June. 26 2019	June. 25 2020
7	RF Switch Box	Shongyi	RFSW3003328	GTS571	June. 26 2019	June. 25 2020
8	EMI Test Receiver	R&S	ESCI 7	GTS552	June. 26 2019	June. 25 2020
9	Programmable Constant Temp & Humi Test Chamber	WEWON	WHTH-150L-40-880	GTS572	June. 26 2019	June. 25 2020

7 Radio Technical Requirements Specification in ETSI EN 300 220-2

7.1 Test conditions

	Ambient:	Temperature.:	+15°C to +35°C				
	Ambient.	relative humidity:	20 % to 75 %				
Normal conditions		Battery:	Nominal				
	Power supply:	AC mains source	Nominal				
	очрыу.	Other power sources	Nominal				
Extreme conditions	Ambient:	Temperature.:	-20°C to +55°C				
	Power supply:	Battery:	0.9 and 1.3 mutiplied for lead-acid battery 0.85 and 1.15 mutiplied for gel-cell type batteries 0.85 and 0.9 mutiplied for lithium and nickel- cadmium type batteries For other types it may declared by manufacturer				
		AC mains source	\pm 10% of the norminal power source				
		Other power sources	Declared by manufacturer				

7.2 Transmitter Requirement

7.2.1 Operation Frequency

The Operational Frequency band was declared by the manufacturer which conforms annexes B, C or any NRI of ETSI EN 300220-2.

7.2.2 Effective Radiated Power

Test Requirement:	ver ETSI EN 300 220-2 clause 4.3.1
Test Method:	ETSI EN 300 220-1 clause 5.2.2
Test site:	Measurement Distance: 3m (Semi-Anechoic Chamber)
Receiver setup:	RBW=120kHz, VBW=300kHz, Detector= peak
Limit:	10mW=10dBm
Test setup:	Antenna Tower 1.50m Ground Reference Plane Test Receiver Test Receiver Test Receiver
Test procedure:	 Substitution method was performed to determine the actual ERP emission levels of the EUT. The following test procedure as below: On the test site as test setup graph above, the EUT shall be placed at the 1.5m support on the turntable and in the position closest to normal use as declared by the provider. The test antenna shall be oriented initially for vertical polarization and shall be chosen to correspond to the frequency of the transmitter. The output of the test antenna shall be connected to the measuring receiver. The transmitter shall be switched on, if possible, without modulation and the measuring receiver shall be tuned to the frequency of the transmitter under test. The test antenna shall be raised and lowered from 1m to 4m until a maximum signal level is detected by the measuring receiver. Then the turntable should be rotated through 360° in the horizontal plane, until the maximum signal level is detected by the measuring receiver. Repeat step 4 for test frequency with the test antenna polarized horizontally. Remove the transmitter and replace it with a substitution antenna (the antenna should be half-wavelength for each frequency involved). The center of the substitution antenna should be approximately at the same location as the center of the transmitter. At the lower frequencies, where the substitution antenna is very long, this will be impossible to achieve when the antenna is polarized vertically. In such case the lower end of the antenna at the transmitter end with a signal generator connected to the antenna by means of a nonradiating cable.

Report No.:	GTS202005000116E02
-------------	--------------------

	Report 10:: 61626266666116262
	generator tuned to a particular test frequency, raise and lower the test antenna to obtain a maximum reading at the spectrum analyzer. Adjust the level of the signal generator output until the previously recorded maximum reading for this set of conditions is obtained. This should be done carefully repeating the adjustment of the test antenna and generator output.
	Repeat step 7 with both antennas horizontally polarized for each test frequency.
	9. Calculate power in dBm into a reference ideal half-wave dipole antenna by reducing the readings obtained in steps 7 and 8 by the power loss in the cable between the generator and the antenna, and further corrected for the gain of the substitution antenna used relative to an ideal half-wave dipole antenna by the following formula:
	ERP(dBm) = Pg(dBm)) + antenna gain (dBd)
	where:
	Pg is the generator output power into the substitution antenna.
Measurement Record:	Uncertainty: 0.65dB
Test Instruments:	Refer to section 6.0 for details
Test mode:	Refer to section 5.2 for details
Test results:	Pass

Measurement Data

Channel	ERP Level (dBm)	Limit (dBm)	Result	
Lowest	12.84			
Middle	12.94	14.00	Pass	
Highest	12.82			

Remark: Peak value is applicable.

7.2.3 Duty Cycle

Test Requirement:	ETSI EN 300 220-2 clause 4.3.3
Test Method:	ETSI EN 300 220-1 clause 5.4
Limit:	According to ETSI EN 300 220-2 table B.1 band K to Q, the minimum dutycycle is 0.1%.
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane
Test Instruments:	Refer to section 6.0 for details
Test mode:	Refer to section 5.2 for details
Test results:	Pass

Measurement Data

Channel	Ton time(ms)	Tcycle time(s)	Dutycycle	Limit	Result
Lowest	1490.00	1800.00	0.083%	0.1%	Pass
Middle	1490.00	1800.00	0.083%	0.1%	Pass
Highest	1490.00	1800.00	0.083%	0.1%	Pass

7.2.4 Occupied Bandwidth

Test Requirement:	ETSI EN 300	220-2 clause 4.3.4	ļ		
Test Method:	ETSI EN 300	ETSI EN 300 220-1 clause 5.6			
Receive setup:	Receive setup: Table 12: Test Parameters for Max Occupied Bandwidth Measurement				
	Setting	Value	Notes		
		The nominal Operating	The highest or lowest Operating Frequency as declared by		
	Centre frequency	Frequency	the manufacturer		
	2014	1 % to 3 % of OCW			
	RBW	without being below 100 Hz			
	VBW	3 x RBW	Nearest available analyser setting to 3 x RBW		
	Span	At least 2 x Operating	Span should be large enough to include all major		
	Detector Mode	Channel width RMS	components of the signal and its side bands		
	Trace	Max hold			
	1		+		
	The Operating	Channel shall be	declared and shall reside entirely within the		
		equency Band.	acciance and chair recide chancily main and		
	· ·				
			vidth at 99 % shall reside entirely within the		
Limit:	Operating Cha	annel defined by F	_{low} and F _{high} .		
	Note: For 865	MHz to 868 MHz	FHSS equipment. The Maximum occupied		
	bandwidth per	hopping channel	shell less or equal to 50kHz. For 863 MHz		
			ne Maximum occupied bandwidth per		
		nel shell less or eq			
Toot cotup:	11 0		GGI 10 100111121		
Test setup:	Spect	rum Analyzer			
			E.U.T		
		Non-Conducte	d Table		
		Ground Referen	nce Plane		
	0, 1				
Test Procedure:	Step 1:				
	Operation of the	ne EUT shall be st	arted, on the highest operating frequency		
	as declared by	the manufacturer	r, with the appropriate test signal.		
	The signal atte	enuation shall be a	adjusted to ensure that the signal power		
	envelope is su	ifficiently above the	e noise floor of the analyser to avoid the		
			e power envelope being included in the		
	measurement		is power officiops being meladed in the		
	Step 2:	a la gamente (c. d. ()	manicular of the tweet should be becaute		
		•	e peak value of the trace shall be located		
		ser marker placed	on this peak.		
	Step 3:				
	The 99 % occ	upied bandwidth fu	unction of the spectrum analyser shall be		
	used to measu	ure the occupied b	andwidth of the signal.		
Measurement Record:			Uncertainty: ±5%		
Test Instruments:	Refer to section	on 6.0 for details	•		
Test mode:	Refer to section	on 5.2 for details			
Test results:	Pass				
. cot rocalto.	. 400				

Measurement Data

Test condition	Channel	99% Occupied Bandwidth(kHz)	F _L (MHz)	F _H (MHz)	Limit	Result	
NITNI) /	Lowest	140.55	863.0245	-	Occupied Bandwidth limited to 300KHz, F _{low} and F _{high} shall reside		
NTNV	Highest	138.29	-	869.9650			
1.7111/	Lowest	139.37	863.0241	-		Occupied	
LTHV	Highest	137.68	-	869.9672			
LTLV	Lowest	140.56	863.0238	-		F _{low} and F _{high} shall reside	Pass
LILV	Highest	139.47	-	869.9638			
HTLV	Lowest	141.53	863.0248	-	entirely within the operating		
HILV	Highest	139.44	-	869.9648	band	band	
HTHV	Lowest	139.58	863.0286	-			
піпу	Highest	140.46	-	869.9631			

The normal condition test plot:

7.2.5 TX Out Of Band Emissions

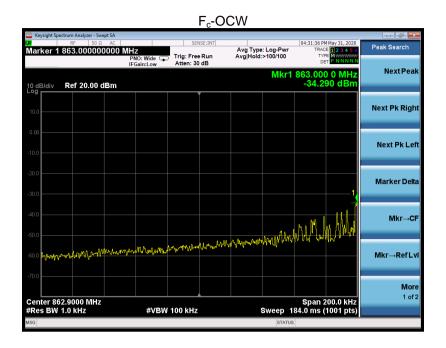
Test Requirement:	ETSI EN 300 220-	2 clause 4.3.5					
Test Method:	ETSI EN 300 220-	-1 clause 5.8.3					
Receive setup:	Table 16: Test i	Parameters for Out Of E	Band for Opera	ting Channe	l Measurement		
	Spectrum Analys Setting	ser Value		Notes			
	Centre frequency	Operating					
	-	Frequency 6 x Operating	1				
	Span	Channel width 1 kHz	Desclution han	duridth for Out	Of Dand damain		
	RBW	(see note)	Resolution bandwidth for Out Of Band domain measurements				
	Detector Function	RMS	Annline only for	CUT	on D. MO to at airm al		
	Trace Mode	Linear AVG	An appropriate averaged to giv	number of sam e a stable read	ling		
		Max Hold	test signal.	EUT generatir	ng D-M2a or D-M3		
		of RBW used is different fr		ause 5.8.2, us	e the bandwidth		
	correction	in clause 4.3.10.1.					
		Table 15: Emission limits	in the Out Of De-	al alama=!=			
					Manager Hard		
	Domain	Frequency Ran f ≤ f _{low OFB} - 400		RBW _{REF}	Max power limi -36 dBm		
		F _{low OFB} - 400 kHz ≤ f ≤ f _{low}	OFB - 200 kHz	1 kHz	-36 dBm		
	OOB limits applicable to	flow - 200 kHz ≤ f < f	flow - 200 kHz ≤ f < f _{low_OFB}		See Figure 6		
	Operational Frequency	f = f _{low_OFB}		1 kHz 1 kHz	0 dBm		
	Band (See Figure 6)	T = T _{high_OFB}	$f = f_{high_OFB}$ $f = f_{high_OFB} + 200 \text{ kHz}$		0 dBm See Figure 6		
		$\frac{1 \text{ high_OFB} \times 1.3 \text{ high_OFB} + 200 \text{ kHz}}{1 \text{ high_OFB}} + 200 \text{ kHz} \le 1 \text{ f}_{\text{high_OFB}} + 400 \text{ kHz}$		1 kHz 1 kHz	-36 dBm		
		F _{high_OFB} + 400 kHz ≤ f		10 kHz	-36 dBm		
Limit:		f = f _c - 2.5 x OCW		1 kHz	-36 dBm		
	COR limite applicable to	$f_{c} - 2.5 \text{ x OCW} \le f \le f_{c} - 0.5 \text{ x OCW}$		1 kHz	See Figure 5		
	OOB limits applicable to Operating Channel	f = f _c - 0,5 x OC		1 kHz 1 kHz	0 dBm		
	(See Figure 5)	Ÿ	$f = f_c + 0.5 \times OCW$ $f_c + 0.5 \times OCW \le f \le f_c + 2.5 \times OCW$		0 dBm See Figure 5		
		f = f _c + 2,5 x OC		1 kHz 1 kHz	-36 dBm		
	F _{high_OFB} is the up		quency Band. equency Band.				
Test setup:	Spectrum	Analyzer	E.U.T				
	Non-Conducted Table						
		Ground Reference Pla	ine				
				Refer to clause 5.8.3.4 of ETSI EN300220-1			
Test Procedure:	Refer to clause 5.8	8.3.4 of ETSI EN30	00220-1				
Test Procedure: Test Instruments:	Refer to clause 5.8 Refer to section 6.		00220-1				
		.0 for details	00220-1				

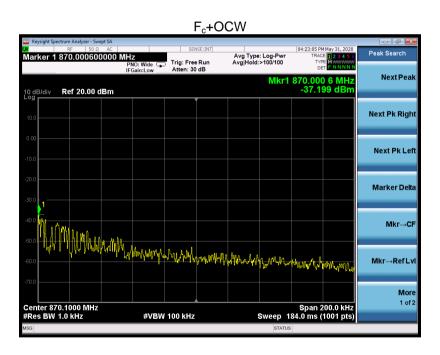
Measurement Data

Domain	Frequency Range	Result
	f ≤ flow_OFB - 400 kHz	Pass
	Flow_OFB - 400 kHz ≤ f ≤ flow_OFB - 200 kHz	Pass
	flow - 200 kHz ≤ f < flow_OFB	Pass
OOB limits applicable to Operational Frequency	f = flow_OFB	Pass
Band	f = fhigh_OFB	Pass
	Fhigh_OFB < f ≤ fhigh_OFB + 200 kHz	Pass
	Fhigh_OFB + 200 kHz ≤ f ≤ fhigh_OFB + 400 kHz	Pass
	Fhigh_OFB + 400 kHz ≤ f	Pass
	f = fc- 2.5 x OCW	Pass
	fc - 2,5 x OCW ≤ f ≤ fc - 0,5 x OCW	Pass
OOB limits applicable to	f = fc - 0,5 x OCW	Pass
Operating Channel	f = fc + 0,5 x OCW	Pass
	fc + 0,5 x OCW ≤ f ≤ fc + 2,5 x OCW	Pass
	f = fc+ 2,5 x OCW	Pass

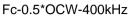
Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102 Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

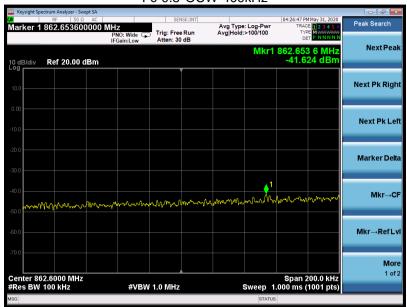
7.2.6 Transient power


Test Requirement:	ETSI EN 300 220-2 Clau	se 4.3.6			
Test Method:	ETSI EN 300 220-1 Clause 5.10.3				
Limit:	Table 23: Transmitter Transient Power limits				
	Absolute offset from centre frequency	RBW _{REF}	Peak power limit	t applicable at measur	ement points
	≤ 400 kHz > 400 kHz	1 kHz 1 kHz		0 dBm -27 dBm	
Test procedure:	The output of the EUT shall be connected to a spectrum analyser or equival measuring equipment. The measurement shall be undertaken in zero span mode. The analyser's centre frequency shall be set to an offset from the operating centre frequent These offset values and their corresponding RBW configurations are listed Table 24.				
		le 24: RBW fo	or Transient Me	easurement	
	Measurement points: offset from centre frequency		Analyser RE	BW	RBW _{REF}
	-0,5 x OCW - 3 kHz 0,5 x OCW + 3 kHz Not applicable for OCW < 25 kHz		1 kHz		1kHz
	±12,5 kHz or ±0CW whichever is the greater	Max (Ri	BW pattern 1, 3, 1 frequency/6 (see		1 kHz
	-0,5 x OCW - 400 kHz 0,5 x OCW + 400 kHz		100 kHz		1 kHz
	-0,5 x OCW -1 200 kHz 0,5 x OCW + 1 200 kHz		300 kHz		1 kHz
	implemented 1, 3, 10 kHz RBW filter bandwidth incremental pattern of spectrum analysers. EXAMPLE: If OCW is 25 kHz then the RBW value corresponding to one OCW offset frequency is 3 kHz. The rest of the analyser settings are listed in Table 25, and if OCW is 250 kHz then the RBW value corresponding to one OCW offset frequency is 30 kHz.				set frequency is CW is 250 kHz
			s for Transient I		
	Spectrum Analyser Setting VBW/RBW		lue 0	At higher RBW value	s VBW may be
	Sweep time	500	ms	clipped to its maximu	m value
	RBW filter Trace Detector Function		ssian MS		
	Trace Mode	Max	hold		
	Sweep points Measurement mode		01 us sweep		
	NOTE: The ratio between the nu different number of swee	mber of sweep p		ep time shall be the sa	me ratio as above if
	The used modulation shat of Table 25 and a measure EUT shall transmit at least recorded and the measure mentioned in Table 24. The recorded power values RBWREF by the formula	rement sha st five D-M3 ement sha es shall be	all be started 3 test signal. Il be repeated converted to	for each offset f The peak value d at each offset	requency. The shall be frequency
Measurement Record:				Uncertai	nty: ± 1.5dB
Test Instruments:	Refer to section 6.0 for de	etails			
Test mode:	Refer to section 5.2 for details				
Test results:	Pass				



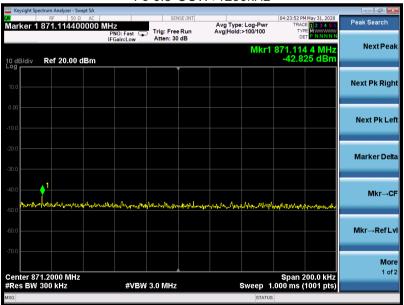
Measurement Data


Frequency offset	Peak Power level (dBm)	Limit (dBm)	Result
F _c -0.5*OCW-1200kHz	-44.99	-27	
F _c -0.5*OCW-400kHz	-41.62	-27	
F _c -OCW	-34.29	0	Daga
F _c +OCW	-37.20	0	Pass
F _c +0.5*OCW+400kHz	-42.20	-27	
F _C +0.5*OCW+1200kHz	-42.83	-27	

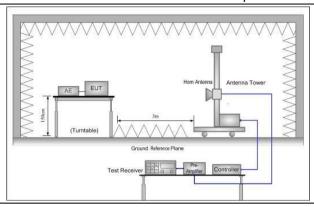




Fc-0.5*OCW+400kHz



Fc-0.5*OCW+1200kHz


7.2.7 Adaptive Power Control

This product not support this function.

7.2.8 Transmit spurious emissions

ETSI EN 300 220-2 Clause 4.2.2				
ETSI EN 300 220-1 Clause 5.9.1.2				
Table 20: Parameters for TX Spurious Radiations Measurement				
Operating Mode	Frequency Range	RBW _{REF} (see note 2)		
Transmit mode	9 kHz ≤ f < 150 kHz	1 kHz		
		10 kHz 100 kHz		
		10 kHz 1 kHz		
		1 kHz		
	<u> </u>	10 kHz		
		100 kHz		
	· ·	1 MHz		
f _c is the Operating Frequency. m is 10 x OCW or 500 kHz, whichever is the greater. n is 4 x OCW or 100 kHz, whichever is the greater. p is 2,5 x OCW. NOTE 2: If the value of RBW used for measurement is different from RBW _{REF} , use bandwidth correction from				
25MHz to 6GHz				
Frequency	Limit(operation)	Limit(standby)		
47 MHz to 74 MHz	47 MHz to 74 MHz			
87.5 MHz to 118 MHz	4nW(-54dBm) 2nW(-57dBm)			
174 MHz to 230 MHz				
470 MHz to 790 MHz				
Other frequencies 250nW(-36dBm) 2nW(-57d		2nW(-57dBm)		
	` '	, ,		
	1uW(-30dBm)	20nW(-47dBm)		
Below 1GHz				
Above 1GHz				
	NOTE 1: f is the measurement frequent fc is the Operating Frequence m is 10 x OCW or 500 kHz, v nis 4 x OCW or 100 kHz, v p is 2,5 x OCW. NOTE 2: If the value of RBW used for clause 4.3.10.1. 25MHz to 6GHz Frequency 47 MHz to 74 MHz 87.5 MHz to 118 MHz 174 MHz to 230 MHz 470 MHz to 790 MHz Other frequencies below 1000 MHz Above 1000 MHz Below 1GHz	Table 20: Parameters for TX Spurious Radiation Operating Mode Transmit mode Frequency Range 150 kHz ≤1 50 kHz 150 kHz ≤1 300 MHz 300 MHz ≤1 50 cm f _c - m ≤1 cf _c - n f _c - n ≤1 cf _c - n f _c - n ≤1 cf _c - n f _c + n <1 cm f _c + n <1 cm f _c + m <1 cm		

Test procedure:

Substitution method was performed to determine the actual ERP emission levels of the EUT.

The following test procedure as below:

Below 1GHz:

- 1. On the test site as test setup graph above, the EUT shall be placed at the 1.5m support on the turntable and in the position closest to normal use as declared by the provider.
- 2. The test antenna shall be oriented initially for vertical polarization and shall be chosen to correspond to the frequency of the transmitter. The output of the test antenna shall be connected to the measuring receiver.
- 3. The transmitter shall be switched on, if possible, without modulation and the measuring receiver shall be tuned to the frequency of the transmitter under test.
- 4. The test antenna shall be raised and lowered from 1m to 4m until a maximum signal level is detected by the measuring receiver. Then the turntable should be rotated through 360° in the horizontal plane, until the maximum signal level is detected by the measuring receiver.
- 5. Repeat step 4 for test frequency with the test antenna polarized horizontally.
- 6. Remove the transmitter and replace it with a substitution antenna (the antenna should be half-wavelength for each frequency involved). The center of the substitution antenna should be approximately at the same location as the center of the transmitter. At the lower frequencies, where the substitution antenna is very long, this will be impossible to achieve when the antenna is polarized vertically. In such case the lower end of the antenna should be 0.3 m above the ground.
- 7. Feed the substitution antenna at the transmitter end with a signal generator connected to the antenna by means of a nonradiating cable. With the antennas at both ends vertically polarized, and with the signal generator tuned to a particular test frequency, raise and lower the test antenna to obtain a maximum reading at the spectrum analyzer. Adjust the level of the signal generator output until the previously recorded maximum reading for this set of conditions is obtained. This should be done carefully repeating the adjustment of the test antenna and generator output.
- 8. Repeat step 7 with both antennas horizontally polarized for each test frequency.
- 9. Calculate power in dBm into a reference ideal half-wave dipole antenna by reducing the readings obtained in steps 7 and 8 by the power loss in

Global United Technology Services Co., Ltd.

No. 123-128, Tower A, Jinyuan Business Building, No.2, Laodong Industrial Zone, Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102 Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960

Page 25 of 33

	the cable between the generator and the antenna, and further corrected for the gain of the substitution antenna used relative to an ideal half-wave dipole antenna by the following formula:	
	ERP(dBm) = Pg(dBm) - cable loss (dB) + antenna gain (dBi) where:	
	Pg is the generator output power into the substitution antenna.	
	Above 1GHz:	
	Different between above is the test site, change from Semi- Anechoic Chamber to fully Anechoic Chamber, and the test antenna do not need to raise from 1 to 4m, just test in 1.5m height.	
Measurement Record:	Uncertainty: 4.64dB	
Test Instruments:	Refer to section 6.0 for details	
Test mode:	Refer to section 5.2 for details	
Test results:	Pass	

Measurement Data

Middle Channel

- (AUL)	Spurious	Emission	1: "(15)	T 15 1
Frequency (MHz)	Polarization	Level(dBm)	Limit (dBm)	Test Result
62.56	Vertical	-69.23		
548.63	V	-65.30		
1437.00	V	-50.05		
2756.00	V	-45.38	Section 7.2.8	Pass
3548.00	V	-41.83		
5110.00	V	-42.22		
48.39	Horizontal	-66.44		
838.70	Н	-67.52		
1804.00	Н	-49.69		
2426.00	Н	-45.94		
3458.00	Н	-41.68		
5310.00	Н	-43.91		

7.3 Receiver Requirements

Receiver Classification, Table 1 of ETSI EN 300 220-1.

Rx Class	Risk assessment of Rx performance
Category 1 is a high performance level of receiver. In particular to be used where the operation of a SRD may have	
	inherent safety of human life implications.
4.5	Category 1.5 is an improved performance level of receiver
1.5	category 2.
2	Category 2 is standard performance level of receiver.
3	Category 3 is a low performance level of receiver. Manufacturers have to be aware that category 3 receivers are not able to work properly in case of coexistence with some services such as a mobile radio service in adjacent bands. The manufacturer shall provide another mean to overcome the
	weakness of the radio link or accept the failure.

NOTE: The receiver category should be stated in both the test report and in the user's manual for the equipment. Receiver category 3 will be withdrawn after December 31st, 2018.

The EUT (Receiver part) belong to Category 2 with no Polite spectrum access function.

7.3.1 Receiver sensitivity

Not applicable, since the test applied to Polite spectrum access equipment.

7.3.2 Clear Channel Assessment threshold

Not applicable, since the test applied to Polite spectrum access equipment.

7.3.3 Polite spectrum access timing parameters

Not applicable, since the test applied to Polite spectrum access equipment.

7.3.4 Adaptive Frequency Agility

Not applicable, since the test applied to AFA guipment.

7.3.5 Adjacent channel selectivity

Not applicable, since the test applied to Category 1 equipment.

7.3.6 Receiver saturation at Adjacent Channel

Not applicable, since the test applied to Category 1 equipment.

7.3.7 Spurious response rejection

Not applicable, since the test applied to Category 1 equipment.

7.3.8 Behaviour at high wanted signal level

Not applicable, since the test applied to Category 1 equipment.

7.3.9 Bi-Directional Operation Verification

Not applicable, since this product is not support Bi-Directional operation function.

7.3.10 Blocking

Test Requirement:	ETSI EN 300 220-2 Clause 4.4.2	ETSI EN 300 220-2 Clause 4.4.2			
Test Method:	ETSI EN 300 220-1 clause 5.18	ETSI EN 300 220-1 clause 5.18			
Limit:	Table 43: Blocking level parameters for RX category 1				
Little:	Requirement Limits				
		Receiver category 1			
	Blocking at ±2 MHz from Centre Frequency	≥ -20 dBm			
	Blocking at ±10 MHz from Centre Frequency	≥ -20 dBm			
	Blocking at ±5 % of Centre Frequency or 15 MHz, whichever is the greater	≥ -20 dBm			
	Table 42: Blocking level para	Table 42: Blocking level parameters for RX category 1.5			
	Requirement	Limits			
	Blocking at ±2 MHz from OC edge f _{high} and f _{low}	Receiver category 1.5			
	Blocking at ±2 MHz from OC edge f _{high} and f _{low}	≥ -43 dBm			
		≥ -33 dBm			
	Blocking at ±5 % of Centre Frequency or 15 MHz, whichever is the greater	≥ -33 dBm			
	Table 41: Blocking level para	ameters for RX category 2			
	Requirement	Limits			
	Blocking at +2 MHz from OC edge for and f	Receiver category 2			
	Blocking at ±2 MHz from OC edge f _{high} and f _{low}	≥ -69 dBm			
	Blocking at ±10 MHz from OC edge f _{high} and f _{low}	≥ -44 dBm			
	Blocking at ±5 % of Centre Frequency or 15 MHz, whichever is the greater	≥ -44 dBm			
	Table 40: Blocking level para	ameters for RX category 3			
	Requirement	Limits			
		Receiver category 3			
	Blocking at ±2 MHz from OC edge f _{high} and f _{low}	≥ -80 dBm			
	Blocking at ±10 MHz from OC edge f _{high} and f _{low}	≥ -60 dBm			
	Blocking at ±5 % of Centre Frequency or 15 MHz, whichever is the greater	≥ -60 dBm			
		A = 10 log (BW _{kHz} / 16 kHz) BW is the receiver bandwidth			
Test setup:					
·	Signal Generator A	Signal Generator A			
	Combiner	- EUT			
	Signal Generator B				
	Signal Generator B				
Test procedure:	1. Two signal generators A and B shal	I be connected to the receiver via a			
7 001 p. 000 000 000	combining network to the receiver a				
	2 Signal generator A shall be at the no	2. Signal generator A shall be at the nominal frequency of the receiver,			
	with normal modulation of the wante	su signai. Signai generator o shall			
	be unmodulated.				
	be difficultated.				
		at frequencies of the unwanted			
	3. Measurements shall be carried out a				
	Measurements shall be carried out a signal at approximately ±2 MHz and	±10 MHz, avoiding those			
	3. Measurements shall be carried out a	±10 MHz, avoiding those			
	Measurements shall be carried out a signal at approximately ±2 MHz and frequencies at which spurious response.	±10 MHz, avoiding those onses occur.			
	3. Measurements shall be carried out a signal at approximately ±2 MHz and frequencies at which spurious response. 4. Initially signal generator B shall be signal.	±10 MHz, avoiding those onses occur. witched off and using signal			
	3. Measurements shall be carried out a signal at approximately ±2 MHz and frequencies at which spurious responsible. 4. Initially signal generator B shall be signerator A the level which still give	±10 MHz, avoiding those onses occur. witched off and using signal is sufficient response shall be			
	 3. Measurements shall be carried out a signal at approximately ±2 MHz and frequencies at which spurious responsible. 4. Initially signal generator B shall be signerator A the level which still give established, however, the level at the 	±10 MHz, avoiding those onses occur. switched off and using signal as sufficient response shall be e receiver input shall not be			
	3. Measurements shall be carried out a signal at approximately ±2 MHz and frequencies at which spurious responsible. 4. Initially signal generator B shall be signerator A the level which still give	±10 MHz, avoiding those onses occur. switched off and using signal as sufficient response shall be e receiver input shall not be			
	 3. Measurements shall be carried out a signal at approximately ±2 MHz and frequencies at which spurious response. 4. Initially signal generator B shall be signerator A the level which still give established, however, the level at the adjusted below the sensitivity limit generator. 	±10 MHz, avoiding those onses occur. switched off and using signal as sufficient response shall be receiver input shall not be iven in clause 8.1.4. The output			
	 Measurements shall be carried out a signal at approximately ±2 MHz and frequencies at which spurious responsible. Initially signal generator B shall be a generator A the level which still give established, however, the level at the adjusted below the sensitivity limit glevel of generator A shall then be income. 	±10 MHz, avoiding those onses occur. witched off and using signal as sufficient response shall be receiver input shall not be iven in clause 8.1.4. The output creased by 3 dB.			
	 3. Measurements shall be carried out a signal at approximately ±2 MHz and frequencies at which spurious responsible. 4. Initially signal generator B shall be a generator A the level which still give established, however, the level at the adjusted below the sensitivity limit glevel of generator A shall then be income. 5. Signal generator B is then switched 	±10 MHz, avoiding those onses occur. witched off and using signal is sufficient response shall be e receiver input shall not be iven in clause 8.1.4. The output creased by 3 dB. on and adjusted until the wanted			
	 Measurements shall be carried out a signal at approximately ±2 MHz and frequencies at which spurious responsible. Initially signal generator B shall be a generator A the level which still give established, however, the level at the adjusted below the sensitivity limit glevel of generator A shall then be income. 	±10 MHz, avoiding those onses occur. witched off and using signal is sufficient response shall be e receiver input shall not be iven in clause 8.1.4. The output creased by 3 dB. on and adjusted until the wanted			
	 Measurements shall be carried out a signal at approximately ±2 MHz and frequencies at which spurious responsible. Initially signal generator B shall be seen generator A the level which still give established, however, the level at the adjusted below the sensitivity limit generator A shall then be income. Signal generator B is then switched criteria (see clause 8.1.1) is just except. 	±10 MHz, avoiding those onses occur. witched off and using signal is sufficient response shall be receiver input shall not be iven in clause 8.1.4. The output creased by 3 dB. on and adjusted until the wanted reeded. With signal generator B			
	 3. Measurements shall be carried out a signal at approximately ±2 MHz and frequencies at which spurious responsible. 4. Initially signal generator B shall be a generator A the level which still give established, however, the level at the adjusted below the sensitivity limit glevel of generator A shall then be income. 5. Signal generator B is then switched 	±10 MHz, avoiding those onses occur. witched off and using signal is sufficient response shall be e receiver input shall not be iven in clause 8.1.4. The output creased by 3 dB. on and adjusted until the wanted eeded. With signal generator B he receiver is measured by			

	Report 10:: 01020200000110202
	integral antenna may use a radiated measurement setup. For this, a test site from clause A.1 shall be selected and the requirements from clauses A.2 and A.3 apply.
	6. Signal generators A and B together with a combiner shall be placed outside the anechoic chamber and a TX test antenna shall be placed with the EUT's antenna polarisation. The EUT shall be placed at the location of the turntable at the orientation of the most sensitive position. Generator A shall be set in order to reach the EUT sensitivity limit +3 dB.
	7. The procedure shall be the same as for the conducted measurement. Bloking is the difference between signal generator B and signal generator A levels.
Test Instruments:	Refer to section 6.0 for details
Test mode:	Refer to section 5.2 for details
Test results:	Pass

Measurement data:

Middle channel

Receiver Category	Frequency Offset	Value(dBm)	Limit(dBm)	Result
2	Flow-5% of Fc	-40	-44.00	Pass
2	Flow-10MHz	-41	-44.00	Pass
2	Flow-2MHz	-58	-69.00	Pass
2	FHigh+2MHz	-56	-69.00	Pass
2	FHigh+10MHz	-42	-44.00	Pass
2	FHigh+5% of Fc	-40	-44.00	Pass

Remark: The provider declared that the receiver bandwidth is 200kHz.

7.3.11 Spurious emissions

Test Requirement:	ETSI EN 300 220-2 Clause 4.2.2			
Test Method:	ETSI EN 300 220-1 Clause 5.9.1.2			
	Table 20: Parameters for TX Spurious Radiations Measurement			
	Operating Mode Frequency Range		RBW _{REF} (see note 2)	
	150 kl	z ≤ f < 150 kHz Hz ≤ f < 30 MHz	1 kHz 10 kHz	
	30 N	⁄lHz ≤ f < f _c - m	100 kHz	
		$m \le f < f_c - n$	10 kHz	
5	$f_c - n \le f < f_c - p$ $f_c + p < f \le f_c + n$		1 kHz 1 kHz	
Receiver setup:	f _c +	$f_c + n < f \le f_c + m $ 10		
		m < f ≤ 1 GHz Hz < f ≤ 6 GHz	100 kHz 1 MHz	
	NOTE 1: f is the measurement frequency. f _c is the Operating Frequency. m is 10 x OCW or 500 kHz, whichever is the greate n is 4 x OCW or 100 kHz, whichever is the greater. p is 2,5 x OCW. NOTE 2: If the value of RBW used for measurement is differ clause 4.3.10.1.		width correction from	
Test Frequency range:	25MHz to 6GHz	1	1	
Limit:	Frequency	Lin	nit	
	Other frequencies	2nW(-5	7dBm)	
	below 1000 MHz	(3. 3.2)		
	Above 1000 MHz Below 1GHz	20nW(-4	17dBm)	
	Above 1GHz	nna Tower		
Test procedure:	Ground Reference Plane Test Receiver Angular Controller Substitution method was performed to controller		al ERP emission	

Global United Technology Services Co., Ltd.

No. 123-128, Tower A, Jinyuan Business Building, No.2, Laodong Industrial Zone, Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102

levels of the EUT.

The following test procedure as below:

Below 1GHz:

- 1. On the test site as test setup graph above, the EUT shall be placed at the 1.5m support on the turntable and in the position closest to normal use as declared by the provider.
- 2. The test antenna shall be oriented initially for vertical polarization and shall be chosen to correspond to the frequency of the transmitter. The output of the test antenna shall be connected to the measuring receiver.
- 3. The transmitter shall be switched on, if possible, without modulation and the measuring receiver shall be tuned to the frequency of the transmitter under test.
- 4. The test antenna shall be raised and lowered from 1m to 4m until a maximum signal level is detected by the measuring receiver. Then the turntable should be rotated through 360° in the horizontal plane, until the maximum signal level is detected by the measuring receiver.
- 5. Repeat step 4 for test frequency with the test antenna polarized horizontally.
- 6. Remove the transmitter and replace it with a substitution antenna (the antenna should be half-wavelength for each frequency involved). The center of the substitution antenna should be approximately at the same location as the center of the transmitter. At the lower frequencies, where the substitution antenna is very long, this will be impossible to achieve when the antenna is polarized vertically. In such case the lower end of the antenna should be 0.3 m above the ground.
- 7. Feed the substitution antenna at the transmitter end with a signal generator connected to the antenna by means of a nonradiating cable. With the antennas at both ends vertically polarized, and with the signal generator tuned to a particular test frequency, raise and lower the test antenna to obtain a maximum reading at the spectrum analyzer. Adjust the level of the signal generator output until the previously recorded maximum reading for this set of conditions is obtained. This should be done carefully repeating the adjustment of the test antenna and generator output.
- 8. Repeat step 7 with both antennas horizontally polarized for each test frequency.
- 9. Calculate power in dBm into a reference ideal half-wave dipole antenna by reducing the readings obtained in steps 7 and 8 by the power loss in the cable between the generator and the antenna, and further corrected for the gain of the substitution antenna used relative to an ideal halfwave dipole antenna by the following formula:

ERP(dBm) = Pg(dBm) - cable loss (dB) + antenna gain (dBd)where:

Pg is the generator output power into the substitution antenna.

Above 1GHz:

Different between above is the test site, change from Semi- Anechoic Chamber to fully Anechoic Chamber, and the test antenna do not need to raise from 1 to 4m, just test in 1.5m height.

Measurement Record:	Uncertainty: 4.64dB
Test Instruments:	Refer to section 6.0 for details
Test mode:	Refer to section 5.2 for details

Test results: Pass

Measurement Data

Middle channel:

Fraguency (MU=)	Spurious	Spurious Emission Limit (dBm) Tes		Test Result
Frequency (MHz)	Polarization	Level(dBm)	Limit (abm)	rest Result
48.01	Vertical	-68.91		
513.55	V	-68.29		
4804.00	V	-60.52	0.14/ 57 10	
7206.00	V	-56.63	2nW/ -57dBm below 1GHz,	
9608.00	V	-51.71	20nW/ -47dBm above 1GHz.	Pass
12010.00	V	-53.59		
34.67	Horizontal	-69.14		
818.68	Н	-68.26		
4804.00	Н	-63.18		
7206.00	Н	-57.56		
9608.00	Н	-53.13		
12010.00	Н	-54.76		

8 Test Setup Photo

Reference to the appendix I for details.

9 EUT Constructional Details

Reference to the appendix II for details.

-----End-----

Xixiang Road, Baoan District, Shenzhen, Guangdong, China 518102 Telephone: +86 (0) 755 2779 8480 Fax: +86 (0) 755 2779 8960