Calibrate LSE01 to use other soil

For Soil Moisture:

If there are three calibrate points (A,B,C and we got reading from these three points) and get below table:

LSE01 reading	A1	B1	C1
Actually reading by 3 rd method	A2	B2	C2
(such as WET-2)			

After we got the above table. We can get calibrated reading from any measured point. Assume X is the reading from LSE01. If we want to get a calibrated reading, Y, we can use below formula,

 $\begin{array}{l} Y = X * A2 \ / \ A1 \ ; (\ while \ X < A1) \\ Y = (X - A1) * (B2 - A2) \ / \ (B1 - A1) + A2 \ ; (\ while \ A1 <= X < B1) \\ Y = (X - B1) * (C2 - B2) \ / \ (C1 - B1) + B2 \ ; (\ while \ B1 <= X < C1) \\ Y = X + C2 - C1 \ ; (\ while \ X >= C1) \\ IF(Y > 100) \ Y = 100 ; \\ Where: \ Y: \ Value \ after \ calibrated, \ unit: \ \%, \ X: \ LSE01 \ reading, \ Unit \ \% \end{array}$

For Soil EC:

If there are three calibrate points (D,E,F and we got reading from these three points) and get below table:

LSE01 reading	D1	E1	F1
Actually reading by 3 rd method	D2	E2	F2
(such as WET-2)			

After we got the above table. We can get calibrated readings from any measured point. Assume X is the reading from LSE01. If we want to get a calibrated reading, Y, we can use below formula,

Formula: If (X<D1) Then Y = X * D2 / D1; If (D1<=X<E1) Then Y = (X-D1) * (E2-D2) / (E1-D1) + D2; If (E1<=X<F1) Then Y = (X-E1) * (F2-E2) / (F1-E1) + E2; If (X>=F1) Then Y = X+F2-F1; (X>=F1) Where: Y: Value after calibrated, X: LSE01 reading Example: Calculate to coco soil.

Moisture	Reading in LSE01	Correct Reading in 3rd device (Bluelab Pulse)
0%	0 (D1)	0 (D2)
50%	25,05 (E1)	50 (E2)
80%	62,55 (F1)	80 (F2)

Below is the moisture reading before calibration.

If we got a reading for LSE01, assume the reading is 40.25

Because 40.25 is between 25.05 and 62.55.

The value after calibration is Y = (X-E1) * (F2-E2) / (F1-E1) + E2 Y = (40.25-25.05) * (80-50) / (62.55-25.05) + 50 = 62.16

Moisture/Hidrated with solution with 2,1 EC	EC Reading in LSE01	EC Correct Reading in 3rd device	
0 %	0 D1	0 D2	
50%	261 us/cm E1	2,5EC E2	
80%	1150 us/cm F1	3,2 EC F2	

If we got a reading for LSE01 , which is 230 us/cm.

Because 230us/cm is lower then 261us/cm.

The value after calibration is:

Y = (X-D1) * (E2-D2) / (E1-D1) + D2 = (230 - 0) * (2.5-0) / (261 - 0) + 0 = 2.2 EC

We have a decoder file for TTN for calibration as example, Download the file LSE01 Calibration Decoder_TTN.txt from this URL:

https://github.com/dragino/dragino-end-node-decoder/tree/main/LSE01

Input the calibrated point value from above:

```
var Moisture_A1=0;
var Moisture_B1=25.05;
var Moisture_C1=62.55;
var Moisture_A2=0;
var Moisture_B2=50;
var Moisture_C2=80;
var EC_D1=0;
var EC_E1=261;
var EC_F1=1150;
var EC_D2=0;
var EC_E2=2.5;
var EC_F2=3.2;
```

When there is an Uplink from LSE01, The result will output the calibrated data Example:

Test

Byte payload FPort Test decoder 0D 03 04 05 0F B9 00 D3 00 E6 52 2 Decoded test payload £ "Bat": "3.331 V", "EC_After_Cal": 2.2, ┥ ------ EC reading after Calibrated "Moisture_Aller_est "Sensor_flag": 5, "TempC_DS18B20": "102.90", '.... Original EC Reading "temp_SOIL": "2.11", "water_SOIL": "40.25" Original Moisture Reading 3