
Building MIT Kerberos
Release 1.14

MIT

CONTENTS

1 Prerequisites 3

2 Obtaining the software 5

3 Contents 7
3.1 Organization of the source directory . 7
3.2 Doing the build . 8
3.3 Options to configure . 10
3.4 osconf.hin . 14

i

ii

Building MIT Kerberos, Release 1.14

This section details how to build and install MIT Kerberos software from the source.

CONTENTS 1

Building MIT Kerberos, Release 1.14

2 CONTENTS

CHAPTER

ONE

PREREQUISITES

In order to build Kerberos V5, you will need approximately 60-70 megabytes of disk space. The exact amount will
vary depending on the platform and whether the distribution is compiled with debugging symbol tables or not.

Your C compiler must conform to ANSI C (ISO/IEC 9899:1990, “c89”). Some operating systems do not have an
ANSI C compiler, or their default compiler requires extra command-line options to enable ANSI C conformance.

If you wish to keep a separate build tree, which contains the compiled *.o file and executables, separate from your
source tree, you will need a make program which supports VPATH, or you will need to use a tool such as lndir to
produce a symbolic link tree for your build tree.

3

Building MIT Kerberos, Release 1.14

4 Chapter 1. Prerequisites

CHAPTER

TWO

OBTAINING THE SOFTWARE

The source code can be obtained from MIT Kerberos Distribution page, at http://web.mit.edu/kerberos/dist/index.html.
The MIT Kerberos distribution comes in an archive file, generally named krb5-VERSION-signed.tar, where VERSION
is a placeholder for the major and minor versions of MIT Kerberos. (For example, MIT Kerberos 1.9 has major version
“1” and minor version “9”.)

The krb5-VERSION-signed.tar contains a compressed tar file consisting of the sources for all of Kerberos
(generally named krb5-VERSION.tar.gz) and a PGP signature file for this source tree (generally named krb5-
VERSION.tar.gz.asc). MIT highly recommends that you verify the integrity of the source code using this signature,
e.g., by running:

tar xf krb5-VERSION-signed.tar
gpg --verify krb5-VERSION.tar.gz.asc

Unpack krb5-VERSION.tar.gz in some directory. In this section we will assume that you have chosen the top directory
of the distribution the directory /u1/krb5-VERSION.

Review the README file for the license, copyright and other sprecific to the distribution information.

5

http://web.mit.edu/kerberos/dist/index.html

Building MIT Kerberos, Release 1.14

6 Chapter 2. Obtaining the software

CHAPTER

THREE

CONTENTS

3.1 Organization of the source directory

Below is a brief overview of the organization of the complete source directory. More detailed descriptions follow.

appl Kerberos application client and server programs
ccapi Credential cache services
clients Kerberos V5 user programs (See user_commands)
config Configure scripts
config-
files

Sample Kerberos configuration files

include include files needed to build the Kerberos system
kadmin Administrative interface to the Kerberos master database: kadmin(1), kdb5_util(8), ktutil(1).
kdc Kerberos V5 Authentication Service and Key Distribution Center
lib Libraries for use with/by Kerberos V5
plugins Kerberos plugins directory
po Localization infrastructure
prototype Templates files containing the MIT copyright message and a placeholder for the title and description

of the file.
slave Utilities for propagating the database to slave KDCs kprop(8) and kpropd(8)
tests Test suite
util Various utilities for building/configuring the code, sending bug reports, etc.
windows Source code for building Kerberos V5 on Windows (see windows/README)

3.1.1 lib

The lib directory contain several subdirectories as well as some definition and glue files.

• The apputils directory contains the code for the generic network servicing.

• The crypto subdirectory contains the Kerberos V5 encryption library.

• The gssapi library contains the Generic Security Services API, which is a library of commands to be used in
secure client-server communication.

• The kadm5 directory contains the libraries for the KADM5 administration utilities.

• The Kerberos 5 database libraries are contained in kdb.

• The krb5 directory contains Kerberos 5 API.

• The rpc directory contains the API for the Kerberos Remote Procedure Call protocol.

7

Building MIT Kerberos, Release 1.14

3.1.2 util

The util directory contains several utility programs and libraries.

• the programs used to configure and build the code, such as autoconf, lndir, kbuild, reconf, and makedepend,
are in this directory.

• the profile directory contains most of the functions which parse the Kerberos configuration files (krb5.conf
and kdc.conf).

• the Kerberos error table library and utilities (et);

• the Sub-system library and utilities (ss);

• database utilities (db2);

• pseudo-terminal utilities (pty);

• bug-reporting program send-pr;

• a generic support library support used by several of our other libraries;

• the build infrastructure for building lightweight Kerberos client (collected-client-lib)

• the tool for validating Kerberos configuration files (confvalidator);

• the toolkit for kernel integrators for building krb5 code subsets (gss-kernel-lib);

• source code for building Kerberos V5 on MacOS (mac)

• Windows getopt operations (windows)

3.2 Doing the build

3.2.1 Using autoconf

(If you are not a developer, you can skip this section.)

In the Kerberos V5 source directory, there is a configure script which automatically determines the compilation envi-
ronment and creates the proper Makefiles for a particular platform. This configure script is generated using autoconf,
which you should already have installed.

Normal users will not need to worry about running autoconf; the distribution comes with the configure script already
prebuilt.

One tool which is provided for the convenience of developers can be found in src/util/reconf. This program
should be run while the current directory is the top source directory. It will automatically rebuild the configure script
if it needs rebuilding. If you know that you have made a change that will require that the configure file be rebuilt from
scratch, specify the --force option:

cd /u1/krb5-VERSION/src
./util/reconf --force

Then follow the instructions for building packaged source trees (below). To install the binaries into a binary tree, do:

cd /u1/krb5-VERSION/src
make all
make install DESTDIR=somewhere-else

You have a number of different options in how to build Kerberos.

8 Chapter 3. Contents

Building MIT Kerberos, Release 1.14

3.2.2 Building within a single tree

If you only need to build Kerberos for one platform, using a single directory tree which contains both the source files
and the object files is the simplest. However, if you need to maintain Kerberos for a large number of platforms, you
will probably want to use separate build trees for each platform. We recommend that you look at OS Incompatibilities,
for notes that we have on particular operating systems.

If you don’t want separate build trees for each architecture, then use the following abbreviated procedure:

cd /u1/krb5-VERSION/src
./configure
make

That’s it!

3.2.3 Building with separate build directories

If you wish to keep separate build directories for each platform, you can do so using the following procedure. (Note,
this requires that your make program support VPATH. GNU’s make will provide this functionality, for example.) If
your make program does not support this, see the next section.

For example, if you wish to store the binaries in tmpbuild build directory you might use the following procedure:

mkdir /u1/tmpbuild
cd /u1/tmpbuild
/u1/krb5-VERSION/src/configure
make

3.2.4 Building using lndir

If you wish to keep separate build directories for each platform, and you do not have access to a make program which
supports VPATH, all is not lost. You can use the lndir program to create symbolic link trees in your build directory.

For example, if you wish to create a build directory for solaris binaries you might use the following procedure:

mkdir /u1/krb5-VERSION/solaris
cd /u1/krb5-VERSION/solaris
/u1/krb5-VERSION/src/util/lndir ‘pwd‘/../src
./configure
make

You must give an absolute pathname to lndir because it has a bug that makes it fail for relative pathnames. Note that
this version differs from the latest version as distributed and installed by the XConsortium with X11R6. Either version
should be acceptable.

3.2.5 Installing the binaries

Once you have built Kerberos, you should install the binaries. You can do this by running:

make install

If you want to install the binaries into a destination directory that is not their final destination, which may be convenient
if you want to build a binary distribution to be deployed on multiple hosts, you may use:

make install DESTDIR=/path/to/destdir

3.2. Doing the build 9

Building MIT Kerberos, Release 1.14

This will install the binaries under DESTDIR/PREFIX, e.g., the user programs will install into DESTDIR/PREFIX/bin,
the libraries into DESTDIR/PREFIX/lib, etc.

Some implementations of make allow multiple commands to be run in parallel, for faster builds. We test our Makefiles
in parallel builds with GNU make only; they may not be compatible with other parallel build implementations.

3.2.6 Testing the build

The Kerberos V5 distribution comes with built-in regression tests. To run them, simply type the following command
while in the top-level build directory (i.e., the directory where you sent typed make to start building Kerberos; see
Building within a single tree):

make check

However, there are several prerequisites that must be satisfied first:

• Configure and build Kerberos with Tcl support. Tcl is used to drive the test suite. This often means passing
--with-tcl to configure to tell it the location of the Tcl configuration script. (See Options to configure.)

• In addition to Tcl, DejaGnu must be available on the system for some of the tests to run. The test suite will still
run the other tests if DejaGnu is not present, but the test coverage will be reduced accordingly.

• On some operating systems, you have to run make install before running make check, or the test suite
will pick up installed versions of Kerberos libraries rather than the newly built ones. You can install into a
prefix that isn’t in the system library search path, though. Alternatively, you can configure with --disable-rpath,
which renders the build tree less suitable for installation, but allows testing without interference from previously
installed libraries.

There are additional regression tests available, which are not run by make check. These tests require manual setup
and teardown of support infrastructure which is not easily automated, or require excessive resources for ordinary use.
The procedure for running the manual tests is documented at http://k5wiki.kerberos.org/wiki/Manual_Testing.

3.2.7 Cleaning up the build

• Use make clean to remove all files generated by running make command.

• Use make distclean to remove all files generated by running ./configure script. After running make
distclean your source tree (ideally) should look like the raw (just un-tarred) source tree with executed
util/reconf command.

3.3 Options to configure

There are a number of options to configure which you can use to control how the Kerberos distribution is built.

3.3.1 Most commonly used options

--help Provides help to configure. This will list the set of commonly used options for building Kerberos.

--prefix=PREFIX By default, Kerberos will install the package’s files rooted at /usr/local. If you desire to place
the binaries into the directory PREFIX, use this option.

--exec-prefix=EXECPREFIX This option allows one to separate the architecture independent programs from the
host-dependent files (configuration files, manual pages). Use this option to install architecture-dependent pro-
grams in EXECPREFIX. The default location is the value of specified by --prefix option.

10 Chapter 3. Contents

http://k5wiki.kerberos.org/wiki/Manual_Testing

Building MIT Kerberos, Release 1.14

--localstatedir=LOCALSTATEDIR This option sets the directory for locally modifiable single-machine data. In
Kerberos, this mostly is useful for setting a location for the KDC data files, as they will be installed in
LOCALSTATEDIR/krb5kdc, which is by default PREFIX/var/krb5kdc.

--with-netlib[=libs] Allows for suppression of or replacement of network libraries. By default, Kerberos V5 config-
uration will look for -lnsl and -lsocket. If your operating system has a broken resolver library or fails to
pass the tests in src/tests/resolv, you will need to use this option.

--with-tcl=TCLPATH Some of the unit-tests in the build tree rely upon using a program in Tcl. The directory specified
by TCLPATH specifies where the Tcl header file (TCLPATH/include/tcl.h) as well as where the Tcl library
(TCLPATH/lib) should be found.

--enable-dns-for-realm Enable the use of DNS to look up a host’s Kerberos realm, if the information is not provided
in krb5.conf(5). See mapping_hostnames for information about using DNS to determine the default realm. DNS
lookups for realm names are disabled by default.

--with-system-et Use an installed version of the error-table (et) support software, the compile_et program, the
com_err.h header file and the com_err library. If these are not in the default locations, you may wish to specify
CPPFLAGS=-I/some/dir and LDFLAGS=-L/some/other/dir options at configuration time as well.

If this option is not given, a version supplied with the Kerberos sources will be built and installed along with the
rest of the Kerberos tree, for Kerberos applications to link against.

--with-system-ss Use an installed version of the subsystem command-line interface software, the mk_cmds program,
the ss/ss.h header file and the ss library. If these are not in the default locations, you may wish to specify
CPPFLAGS=-I/some/dir and LDFLAGS=-L/some/other/dir options at configuration time as well.
See also the SS_LIB option.

If this option is not given, the ss library supplied with the Kerberos sources will be compiled and linked into
those programs that need it; it will not be installed separately.

--with-system-db Use an installed version of the Berkeley DB package, which must provide an API compatible with
version 1.85. This option is unsupported and untested. In particular, we do not know if the database-rename
code used in the dumpfile load operation will behave properly.

If this option is not given, a version supplied with the Kerberos sources will be built and installed. (We are not
updating this version at this time because of licensing issues with newer versions that we haven’t investigated
sufficiently yet.)

3.3.2 Environment variables

CC=COMPILER Use COMPILER as the C compiler.

CFLAGS=FLAGS Use FLAGS as the default set of C compiler flags.

CPP=CPP C preprocessor to use. (e.g., CPP=’gcc -E’)

CPPFLAGS=CPPOPTS Use CPPOPTS as the default set of C preprocessor flags. The most common use of this
option is to select certain #define’s for use with the operating system’s include files.

DB_HEADER=headername If db.h is not the correct header file to include to compile against the Berkeley DB 1.85
API, specify the correct header file name with this option. For example, DB_HEADER=db3/db_185.h.

DB_LIB=libs... If -ldb is not the correct library specification for the Berkeley DB library version to be used, override
it with this option. For example, DB_LIB=-ldb-3.3.

DEFCCNAME=ccachename Override the built-in default credential cache name. For example,
DEFCCNAME=DIR:/var/run/user/%{USERID}/ccache See parameter_expansion for informa-
tion about supported parameter expansions.

3.3. Options to configure 11

Building MIT Kerberos, Release 1.14

DEFCKTNAME=keytabname Override the built-in default client keytab name. The format is the same as for DE-
FCCNAME.

DEFKTNAME=keytabname Override the built-in default keytab name. The format is the same as for DEFCCNAME.

LD=LINKER Use LINKER as the default loader if it should be different from C compiler as specified above.

LDFLAGS=LDOPTS This option informs the linker where to get additional libraries (e.g., -L<lib dir>).

LIBS=LDNAME This option allows one to specify libraries to be passed to the linker (e.g., -l<library>)

SS_LIB=libs... If -lss is not the correct way to link in your installed ss library, for example if additional support
libraries are needed, specify the correct link options here. Some variants of this library are around which allow
for Emacs-like line editing, but different versions require different support libraries to be explicitly specified.

This option is ignored if --with-system-ss is not specified.

YACC The ‘Yet Another C Compiler’ implementation to use. Defaults to the first program found out of: ‘bison -y‘,
‘byacc‘, ‘yacc‘.

YFLAGS The list of arguments that will be passed by default to $YACC. This script will default YFLAGS to the
empty string to avoid a default value of -d given by some make applications.

3.3.3 Fine tuning of the installation directories

--bindir=DIR User executables. Defaults to EXECPREFIX/bin, where EXECPREFIX is the path specified by --
exec-prefix configuration option.

--sbindir=DIR System admin executables. Defaults to EXECPREFIX/sbin, where EXECPREFIX is the path spec-
ified by --exec-prefix configuration option.

--sysconfdir=DIR Read-only single-machine data such as krb5.conf. Defaults to PREFIX/etc, where PREFIX is
the path specified by --prefix configuration option.

--libdir=DIR Object code libraries. Defaults to EXECPREFIX/lib, where EXECPREFIX is the path specified by
--exec-prefix configuration option.

--includedir=DIR C header files. Defaults to PREFIX/include, where PREFIX is the path specified by --prefix
configuration option.

--datarootdir=DATAROOTDIR Read-only architecture-independent data root. Defaults to PREFIX/share, where
PREFIX is the path specified by --prefix configuration option.

--datadir=DIR Read-only architecture-independent data. Defaults to path specified by --datarootdir configuration
option.

--localedir=DIR Locale-dependent data. Defaults to DATAROOTDIR/locale, where DATAROOTDIR is the path
specified by --datarootdir configuration option.

--mandir=DIR Man documentation. Defaults to DATAROOTDIR/man, where DATAROOTDIR is the path specified
by --datarootdir configuration option.

3.3.4 Program names

--program-prefix=PREFIX Prepend PREFIX to the names of the programs when installing them. For example, spec-
ifying --program-prefix=mit- at the configure time will cause the program named abc to be installed
as mit-abc.

--program-suffix=SUFFIX Append SUFFIX to the names of the programs when installing them. For example, spec-
ifying --program-suffix=-mit at the configure time will cause the program named abc to be installed
as abc-mit.

12 Chapter 3. Contents

Building MIT Kerberos, Release 1.14

--program-transform-name=PROGRAM Run sed -e PROGRAM on installed program names. (PROGRAM is a
sed script).

3.3.5 System types

--build=BUILD Configure for building on BUILD (e.g., --build=x86_64-linux-gnu).

--host=HOST Cross-compile to build programs to run on HOST (e.g., --host=x86_64-linux-gnu). By de-
fault, Kerberos V5 configuration will look for “build” option.

3.3.6 Optional features

--disable-option-checking Ignore unrecognized –enable/–with options.

--disable-FEATURE Do not include FEATURE (same as –enable-FEATURE=no).

--enable-FEATURE[=ARG] Include FEATURE [ARG=yes].

--enable-maintainer-mode Enable rebuilding of source files, Makefiles, etc.

--disable-delayed-initialization Initialize library code when loaded. Defaults to delay until first use.

--disable-thread-support Don’t enable thread support. Defaults to enabled.

--disable-rpath Suppress run path flags in link lines.

--enable-athena Build with MIT Project Athena configuration.

--disable-kdc-lookaside-cache Disable the cache which detects client retransmits.

--disable-pkinit Disable PKINIT plugin support.

--disable-aesni Disable support for using AES instructions on x86 platforms.

3.3.7 Optional packages

--with-PACKAGE[=ARG] Use PACKAGE (e.g., --with-imap). The default value of ARG is yes.

--without-PACKAGE Do not use PACKAGE (same as --with-PACKAGE=no) (e.g., --without-libedit).

--with-size-optimizations Enable a few optimizations to reduce code size possibly at some run-time cost.

--with-system-et Use the com_err library and compile_et utility that are already installed on the system, instead of
building and installing local versions.

--with-system-ss Use the ss library and mk_cmds utility that are already installed on the system, instead of building
and using private versions.

--with-system-db Use the berkeley db utility already installed on the system, instead of using a private version. This
option is not recommended; enabling it may result in incompatibility with key databases originating on other
systems.

--with-netlib=LIBS Use the resolver library specified in LIBS. Use this variable if the C library resolver is insufficient
or broken.

--with-hesiod=path Compile with Hesiod support. The path points to the Hesiod directory. By default Hesiod is
unsupported.

--with-ldap Compile OpenLDAP database backend module.

3.3. Options to configure 13

Building MIT Kerberos, Release 1.14

--with-tcl=path Specifies that path is the location of a Tcl installation. Tcl is needed for some of the tests run by
‘make check’; such tests will be skipped if this option is not set.

--with-vague-errors Do not send helpful errors to client. For example, if the KDC should return only vague error
codes to clients.

--with-crypto-impl=IMPL Use specified crypto implementation (e.g., --with-crypto-impl=openssl). The default is
the native MIT Kerberos implementation builtin. The other currently implemented crypto backends are
openssl and nss. (See mitK5features)

--with-prng-alg=ALG Use specified PRNG algorithm. For example, to use the OS native prng specify
--with-prng-alg=os.

Default is the fortuna PRNG algorithm. For the nss crypto backend use one must explicitly specify
--with-prng-alg=nss. (See mitK5features)

--with-pkinit-crypto-impl=IMPL Use the specified pkinit crypto implementation IMPL. Defaults to using OpenSSL.

--without-libedit Do not compile and link against libedit. Some utilities will no longer offer command history or
completion in interactive mode if libedit is disabled.

--with-readline Compile and link against GNU readline, as an alternative to libedit. Building with readline breaks
the dejagnu test suite, which is a subset of the tests run by ‘make check’.

--with-system-verto Use an installed version of libverto. If the libverto header and library are not in default locations,
you may wish to specify CPPFLAGS=-I/some/dir and LDFLAGS=-L/some/other/dir options at
configuration time as well.

If this option is not given, the build system will try to detect an installed version of libverto and use it if it is
found. Otherwise, a version supplied with the Kerberos sources will be built and installed. The built-in version
does not contain the full set of back-end modules and is not a suitable general replacement for the upstream
version, but will work for the purposes of Kerberos.

Specifying --without-system-verto will cause the built-in version of libverto to be used unconditionally.

--with-krb5-config=PATH Use the krb5-config program at PATH to obtain the build-time default credential cache,
keytab, and client keytab names. The default is to use krb5-config from the program path. Specify
--without-krb5-config to disable the use of krb5-config and use the usual built-in defaults.

3.3.8 Examples

For example, in order to configure Kerberos on a Solaris machine using the suncc compiler with the optimizer turned
on, run the configure script with the following options:

% ./configure CC=suncc CFLAGS=-O

For a slightly more complicated example, consider a system where several packages to be used by Kerberos are
installed in /usr/foobar, including Berkeley DB 3.3, and an ss library that needs to link against the curses library.
The configuration of Kerberos might be done thus:

./configure CPPFLAGS=-I/usr/foobar/include LDFLAGS=-L/usr/foobar/lib \
--with-system-et --with-system-ss --with-system-db \
SS_LIB=’-lss -lcurses’ DB_HEADER=db3/db_185.h DB_LIB=-ldb-3.3

3.4 osconf.hin

There is one configuration file which you may wish to edit to control various compile-time parameters in the Kerberos
distribution:

14 Chapter 3. Contents

Building MIT Kerberos, Release 1.14

include/osconf.hin

The list that follows is by no means complete, just some of the more interesting variables.

DEFAULT_PROFILE_PATH The pathname to the file which contains the profiles for the known realms, their
KDCs, etc. The default value is /etc/krb5.conf.

DEFAULT_KEYTAB_NAME The type and pathname to the default server keytab file. The default is DEFKTNAME.

DEFAULT_KDC_ENCTYPE The default encryption type for the KDC database master key. The default value is
aes256-cts-hmac-sha1-96.

RCTMPDIR The directory which stores replay caches. The default is /var/tmp.

DEFAULT_KDB_FILE The location of the default database. The default value is LOCALSTATE-
DIR/krb5kdc/principal.

3.4. osconf.hin 15

	Prerequisites
	Obtaining the software
	Contents
	Organization of the source directory
	Doing the build
	Options to configure
	osconf.hin

