

Global United Technology Services Co., Ltd.

Report No.: GTS201903000025E02

SPECTRUM REPORT

Applicant: Dragino Technology Co., Limited

Address of Applicant: Room 202, Block B, BaoChengTai industrial park, No.8

CaiYunRoad LongCheng Street, LongGang District, Shenzhen

518116.China

Manufacturer/Factory: Dragino Technology Co., Limited

Address of Room 202, Block B, BaoChengTai industrial park, No.8

CaiYunRoad LongCheng Street, LongGang District, Shenzhen Manufacturer/Factory:

518116, China

Equipment Under Test (EUT)

LoRa IoT Gateway Product Name:

LG02, LG01-N Model No.:

Applicable standards: ETSI EN 300 220-1 V3.1.1 (2017-02)

ETSI EN 300 220-2 V3.1.1 (2017-02)

Date of sample receipt: March 04, 2019

Date of Test: March 05-21, 2019

March 22, 2019 Date of report issue:

Pass * Test Result:

*In the configuration tested, the EUT complied with the standards specified above.

The CE mark as shown below can be used, under the responsibility of the manufacturer, after completion of an EC Declaration of Conformity and compliance with all relevant EC Directives. The protection requirements with respect to electromagnetic compatibility contained in Directive 2014/53/EU are considered.

Robinson Lo **Laboratory Manager**

This results shown in this test report refer only to the sample(s) tested, this test report cannot be reproduced, except in full, without prior written permission of the company. The report would be invalid without specific stamp of test institute and the signatures of compiler and approver.

2 Version

Version No.	Date	Description
00	March 22, 2019	Original

Prepared By:	Bill. Yvan	Date:	March 22, 2019
	Project Engineer		
Check By:	Reviewer	Date:	March 22, 2019

3 Contents

			Page
1	COVER	PAGE	1
2	VERSI	ON	2
3	CONTE	:NTS	3
4	TEST S	SUMMARY	4
5	_	RAL INFORMATION	_
		ENERAL DESCRIPTION OF EUT	
	-	ST MODE	
		ST FACILITY	
		ST LOCATION	
		ESCRIPTION OF SUPPORT UNITS	
		EVIATION FROM STANDARDS	
		BNORMALITIES FROM STANDARD CONDITIONS	
	5.8 O	THER INFORMATION REQUESTED BY THE CUSTOMER	7
6	TEST I	NSTRUMENTS LIST	8
7	RADIO	TECHNICAL REQUIREMENTS SPECIFICATION IN ETSI EN 300 220-2	9
		ST CONDITIONS	
	7.2 Ti	RANSMITTER REQUIREMENT	9
	7.2.1	Operation Frequency	9
	7.2.2	Effective Radiated Power	10
	7.2.3	Duty Cycle	12
	7.2.4	Occupied Bandwidth	13
	7.2.5	Frequency Error	15
	7.2.6	TX Out Of Band Emissions	16
	7.2.7	Transient power	18
	7.2.8	Adjacent Channel Power	
	7.2.9	Adaptive Power Control	20
	7.2.10	TX FHSS	
	7.2.11	TX Behaviour under Low-voltage Conditions	
	7.2.12	Transmit spurious emissions	
	_	ECEIVER REQUIREMENTS	_
	7.3.1	Receiver sensitivity	
	7.3.2	Clear Channel Assessment threshold	
	7.3.3	Polite spectrum access timing parameters	
	7.3.4	Adaptive Frequency Agility	
	7.3.5	Adjacent channel selectivity	
	7.3.6	Receiver saturation at Adjacent Channel	
	7.3.7	Spurious response rejection	
	7.3.8	Behaviour at high wanted signal level	
	7.3.9	Bi-Directional Operation Verification	
	7.3.10	Blocking	
	7.3.11	Spurious emissions	
8	TEST S	ETUP PHOTO	32
9	EUT C	DNSTRUCTIONAL DETAILS	32

4 Test Summary

Report No.: GTS201903000025E02

Test item	ETSI EN 300 220-2	ETSI EN 300 220-1	Condition	Result	
	Clause Number				
Operating Frequency	4.2.1	5.1.1		Pass	
Unwanted emissions in the spurious domain	4.2.2	5.9.1		Pass	
TX effective radiated power	4.3.1	5.2.1		Pass	
TX Maximum e.r.p. spectral density	4.3.2	5.3.1	Applies to EUT using annex B bands 1, L. Applies to EUT using DSSS or wideband techniques other than FHSS modulation, using annex C band X.	N/A	
TX Duty cycle	4.3.3	5.4.1	Not applicable to EUT with polite spectrum access where permitted in annex B. table B.1 or annex C, table .1 or any NRI.	Pass	
TX Occupied bandwidth	4.3.4	5.6.1		Pass	
Tx out of band emissions	4.3.5	5.8.1	Applies to EUT with OCW> 25 kHz.	Pass	
TX Transient	4.3.6	5.10.1		Pass	
TX Adjacent channel power	4.3.7	5.11.1	Applies to EUT with OCW<25kHz.	N/A	
TX behaviour under low voltage conditions	4.3.8	5.12.1	Applies to battery powered EUT.	Pass	
TX Adaptive power control	4.3.9	5.13.1	Applies to EUT with adaptive power control using annex C band AA.	N/A	
TX FHSS	4.3.10	4.3.5	Applies to FHSS EUT.	Pass	
TX Short term behaviour	4.3.11	5.5.1	Applies to EUT using annex C bands Y, Z,A, AB, AC, AD.	N/A	
RX sensitivity	4.4.1	5.14.1	Applies to EUT with polite spectrum access.	N/A	
Clear channel assessment threshold	4.5.2	5.21.2	Applies to EUT with polite spectrum access.	N/A	
Polite spectrum access timing parameters	4.5.3	5.21.1	Applies to EUT with polite spectrum access.	N/A	
RX Blocking	4.4.2	5.18.1		Pass	
Adaptive Frequency Agility	4.5.4	5.21.4.1	Applies to EUT with AFA.	N/A	

Remark:

Tx: In this whole report Tx (or tx) means Transmitter.

Rx: In this whole report Rx (or rx) means Receiver.

Temperature (Uncertainty): ±1°C Humidity(Uncertainty): ±5%

EUT not support Polite spectrum access equipment.

5 General Information

5.1 General Description of EUT

<u> </u>					
Product Name:	LoRa IoT Gateway				
Model No.:	LG02, LG01-N				
Test Model No.:	LG02				
Remark: All above models are identical in the same PCB layout and electrical circuits.					
The differences are show	n in the table below:				
Model name	Module	Antenna			
LG02	Module 1: 868MHz	Antenna 1: 868MHz(TX)			
	Module 2: 868MHz	Antenna 2: 868MHz(RX)			
	Module 3: WIFI 2.4G	Antenna 3: WIFI 2.4G(TX/RX)			
LG01-N	Module 1: 868MHz	Antenna 1: 868MHz(TX/RX)			
	Module 2: WIFI	Antenna 2: WIFI 2.4G(TX/RX)			
Operation Frequency:	863MHz~870MHz				
Channel numbers:	35				
Channel separation:	200kHz				
Occupied bandwidth	200kHz(Declared by manufactu	rer)			
Modulation type:	FSK				
Antenna type:	External antenna	External antenna			
Antenna Gain:	3.35dBi(Declared by applicant)	3.35dBi(Declared by applicant)			
Power supply:	AC/DC ADAPTER	AC/DC ADAPTER			
	Model:TP12-120100E				
	Input: AC 100-240V, 50/60Hz, 0	.5A Max			
	Output: DC 12V, 1.0A				

Operation	Operation Frequency each of channel						
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency
1	863.1MHz	10	864.9MHz	19	866.7MHz	28	868.5MHz
2	863.3MHz	11	865.1MHz	20	866.9MHz	29	868.7MHz
3	863.5MHz	12	865.3MHz	21	867.1MHz	30	868.9MHz
4	863.7MHz	13	865.5MHz	22	867.3MHz	31	869.1MHz
5	863.9MHz	14	865.7MHz	23	867.5MHz	32	869.3MHz
6	864.1MHz	15	865.9MHz	24	867.7MHz	33	869.5MHz
7	864.3MHz	16	866.1MHz	25	867.9MHz	34	869.7MHz
8	864.5MHz	17	866.3MHz	26	868.1MHz	35	869.9MHz
9	864.7MHz	18	866.5MHz	27	868.3MHz		

The test frequencies are below:

Channel	Frequency
The lowest channel	863.1MHz
The middle channel	866.5MHz
The Highest channel	869.9MHz

Xixiang Road, Baoan District, Shenzhen, Guangdong, China

5.2 Test mode

Transmitting mode	Keep the EUT in continuously transmitting mode
Receiving mode	Keep the EUT in receiving mode

5.3 Test Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC —Registration No.: 381383

Global United Technology Services Co., Ltd., Shenzhen EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in files. Registration 381383.

• Industry Canada (IC) —Registration No.: 9079A-2

The 3m Semi-anechoic chamber of Global United Technology Services Co., Ltd. has been registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 9079A-2.

• NVLAP (LAB CODE:600179-0)

Global United Technology Services Co., Ltd., is accredited by the National Voluntary Laboratory Accreditation Program (NVLAP). LAB CODE:600179-0

5.4 Test Location

All tests were performed at:

Global United Technology Services Co., Ltd.

Address: No. 123-128, Tower A, Jinyuan Business Building, No.2, Laodong Industrial Zone, Xixiang Road,

Baoan District, Shenzhen, Guangdong, China

Tel: 0755-27798480 Fax: 0755-27798960

5.5 Description of Support Units

None

5.6 Deviation from Standards

None

5.7 Abnormalities from Standard Conditions

None

5.8 Other Information Requested by the Customer

None

Global United Technology Services Co., Ltd.

No. 123- 128, Tower A, Jinyuan Business Building, No.2, Laodong Industrial Zone,

Xixiang Road, Baoan District, Shenzhen, Guangdong, China

6 Test Instruments list

Rad	Radiated Emission:						
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)	
1	3m Semi- Anechoic Chamber	ZhongYu Electron	9.2(L)*6.2(W)* 6.4(H)	GTS250	July. 03 2015	July. 02 2020	
2	Control Room	ZhongYu Electron	6.2(L)*2.5(W)* 2.4(H)	GTS251	N/A	N/A	
3	EMI Test Receiver	Rohde & Schwarz	ESU26	GTS203	June. 27 2018	June. 26 2019	
4	BiConiLog Antenna	SCHWARZBECK MESS-ELEKTRONIK	VULB9163	GTS214	June. 27 2018	June. 26 2019	
5	Double -ridged	SCHWARZBECK	BBHA 9120 D	GTS208	June. 27 2018	June. 26 2019	
Э	waveguide horn	MESS-ELEKTRONIK	BBNA 9120 D	G13206	June. 27 2016	June. 26 2019	
6	Horn Antenna	ETS-LINDGREN	3160	GTS217	June. 27 2018	June. 26 2019	
7	EMI Test Software	AUDIX	E3	N/A	N/A	N/A	
8	Coaxial Cable	GTS	N/A	GTS213	June. 27 2018	June. 26 2019	
9	Coaxial Cable	GTS	N/A	GTS211	June. 27 2018	June. 26 2019	
10	Coaxial cable	GTS	N/A	GTS210	June. 27 2018	June. 26 2019	
11	Coaxial Cable	GTS	N/A	GTS212	June. 27 2018	June. 26 2019	
12	Amplifier(100kHz-3GHz)	HP	8347A	GTS204	June. 27 2018	June. 26 2019	
13	Amplifier(2GHz-20GHz)	HP	84722A	GTS206	June. 27 2018	June. 26 2019	
14	Amplifier (18-26GHz)	Rohde & Schwarz	AFS33-18002 650-30-8P-44	GTS218	June. 27 2018	June. 26 2019	
15	Band filter	Amindeon	82346	GTS219	June. 27 2018	June. 26 2019	
16	Power Meter	Anritsu	ML2495A	GTS540	June. 27 2018	June. 26 2019	
17	Power Sensor	Anritsu	MA2411B	GTS541	June. 27 2018	June. 26 2019	
18	Wideband Radio Communication Tester	Rohde & Schwarz	CMW500	GTS575	June. 27 2018	June. 26 2019	
19	Splitter	Agilent	11636B	GTS237	June. 27 2018	June. 26 2019	
20	Loop Antenna	ZHINAN	ZN30900A	GTS534	June. 27 2018	June. 26 2019	
21	Breitband hornantenne	SCHWARZBECK	BBHA 9170	GTS579	Oct. 20 2018	Oct. 19 2019	
22	Amplifier	TDK	PA-02-02	GTS574	Oct. 20 2018	Oct. 19 2019	
23	Amplifier	TDK	PA-02-03	GTS576	Oct. 20 2018	Oct. 19 2019	
24	PSA Series Spectrum Analyzer	Rohde & Schwarz	FSP	GTS578	June. 27 2018	June. 26 2019	

General used equipment:							
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal.Date (mm-dd-yy)	Cal.Due date (mm-dd-yy)	
1	Humidity/ Temperature Indicator	KTJ	TA328	GTS243	June. 27 2018	June. 26 2019	
2	Barometer	ChangChun	DYM3	GTS255	June. 27 2018	June. 26 2019	

7 Radio Technical Requirements Specification in ETSI EN 300 220-2

7.1 Test conditions

	Ambient:	Temperature.:	+15°C to +35°C	
	Ambient.	relative humidity:	20 % to 75 %	
Normal conditions		Battery:	Nominal	
	Power supply:	AC mains source	Nominal	
	очрыу.	Other power sources	Nominal	
	Ambient:	Temperature.:	-20°C to +55°C	
Extreme conditions	Power supply:	Battery:	0.9 and 1.3 mutiplied for lead-acid battery 0.85 and 1.15 mutiplied for gel-cell type batteries 0.85 and 0.9 mutiplied for lithium and nickel- cadmium type batteries For other types it may declared by manufacturer	
		AC mains source $\pm 10\%$ of the norminal power source		
		Other power sources	Declared by manufacturer	

7.2 Transmitter Requirement

7.2.1 Operation Frequency

The Operational Frequency band(863~870MHz) was declared by the manufacturer which conforms annexes B, C or any NRI of ETSI EN 300220-2.

7.2.2 Effective Radiated Power

Test Requirement:	ETSI EN 300 220-2 clause 4.3.1			
Test Method:	ETSI EN 300 220-1 clause 5.2			
Test site:	Measurement Distance: 3m (Semi-Anechoic Chamber)			
Receiver setup:	RBW=120kHz, VBW=300kHz, Detector= peak			
Limit:	25mW=14dBm (Refer to Annex B of ETSI EN 300220-2)			
Test setup:	Antenna Tower 1.50m (Turntable) Tost Receiver Tost Receiver Tost Receiver Tost Receiver			
Test procedure:	Substitution method was performed to determine the actual ERP emission levels of the EUT. The following test procedure as below:			
	1. On the test site as test setup graph above, the EUT shall be placed at the 1.5m support on the turntable and in the position closest to normal use as declared by the provider.			
	2. The test antenna shall be oriented initially for vertical polarization and shall be chosen to correspond to the frequency of the transmitter. The output of the test antenna shall be connected to the measuring receiver.			
	3. The transmitter shall be switched on, if possible, without modulation and the measuring receiver shall be tuned to the frequency of the transmitter under test.			
	4. The test antenna shall be raised and lowered from 1m to 4m until a maximum signal level is detected by the measuring receiver. Then the turntable should be rotated through 360° in the horizontal plane, until the maximum signal level is detected by the measuring receiver.			
	Repeat step 4 for test frequency with the test antenna polarized horizontally.			
	6. Remove the transmitter and replace it with a substitution antenna (the antenna should be half-wavelength for each frequency involved). The center of the substitution antenna should be approximately at the same location as the center of the transmitter. At the lower frequencies, where the substitution antenna is very long, this will be impossible to achieve when the antenna is polarized vertically. In such case the lower end of the antenna should be 0.3 m above the ground.			
	7. Feed the substitution antenna at the transmitter end with a signal generator connected to the antenna by means of a nonradiating cable.			

	Report No.: GTS201903000025E02
	With the antennas at both ends vertically polarized, and with the signal generator tuned to a particular test frequency, raise and lower the test antenna to obtain a maximum reading at the spectrum analyzer. Adjust the level of the signal generator output until the previously recorded maximum reading for this set of conditions is obtained. This should be done carefully repeating the adjustment of the test antenna and generator output.
8.	Repeat step 7 with both antennas horizontally polarized for each test frequency.
9.	Calculate power in dBm into a reference ideal half-wave dipole antenna by reducing the readings obtained in steps 7 and 8 by the power loss in the cable between the generator and the antenna, and further corrected for the gain of the substitution antenna used relative to an ideal half-wave dipole antenna by the following formula:
	ERP(dBm) = Pg(dBm)) + antenna gain (dBd)
	where:
	Pg is the generator output power into the substitution antenna.
	Uncertainty: ± 1.5dB
Re	fer to section 6.0 for details

Measurement Data

Test conditions	Channel	ERP Level (dBm)	Limit (dBm)	Result
	Lowest	10.25		
Normal	Middle	10.23	14	Pass
	Highest	10.31		

Refer to section 5.2 for details

Pass

Remark: Peak value is applicable.

Measurement Record:

Test Instruments:

Test mode:

Test results:

7.2.3 Duty Cycle

Test Requirement:	ETSI EN 300 220-2 clause 4.3.3		
Test Method:	ETSI EN 300 220-1 clause 5.4		
Limit:	1%		
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table		
	Ground Reference Plane		
Test procedure:	An assessment of the overall Duty Cycle shall be made for a representative period of Tobs over the observation bandwidth Fobs. Unless otherwise specified, Tobs is 1 hour and the observation bandwidth Fobs is the operational frequency band. The representative period shall be the most active one in normal use of the device. As a guide "Normal use" is considered as representing the behaviour of the device during transmission of 99 % of transmissions generated during its operational lifetime. Procedures such as setup, commissioning and maintenance are not considered part of normal operation. Where an acknowledgement is used, the additional transmitter on-time from a message responder shall be declared only once whether included in the message initiator Duty Cycle or in the message responder Duty Cycle. Center frequency: The nominal operating frequency RBW=100kHz VBW>=3*RBW Span=0 Hz Trace detector: Peak		
Test Instruments:	Refer to section 6.0 for details		
Test mode:	Refer to section 5.2 for details		
Result:	Pass		

Measurement Data

Channel	Ton time(s)	Tcycle time(s)	Dutycycle	Limit	Result
Lowest	0.1	60	0.17%	40/	Pass
Highest	0.1	60	0.17%	1%	Pass

7.2.4 Occupied Bandwidth

Test Requirement:	ETSI EN 300	220-2 clause 4.3.4			
Test Method:	ETSI EN 300	220-1 clause 5.6			
Receive setup:	Table	12: Test Parameters fo	r Max Occupied Bandwidth Measurement		
	Setting	Value	Notes		
	Centre frequency	The nominal Operating	The highest or lowest Operating Frequency as declared by		
	Centre frequency	Frequency	the manufacturer		
	RBW	1 % to 3 % of OCW without being below			
	TOV.	100 Hz			
	VBW	3 x RBW	Nearest available analyser setting to 3 x RBW		
	Span	At least 2 x Operating Channel width	Span should be large enough to include all major components of the signal and its side bands		
	Detector Mode	RMS	components of the signal and its side bands		
	Trace	Max hold			
		The Operating Channel shall be declared and shall reside entirely within the Operational Frequency Band. The Maximum Occupied Bandwidth at 99 % shall reside entirely within the Maximum Occupied Bandwidth at 99 % shall reside entirely within the Maximum Occupied Bandwidth at 99 % shall reside entirely within the Maximum Occupied Bandwidth at 99 % shall reside entirely within the Maximum Occupied Bandwidth at 99 % shall reside entirely within the Maximum Occupied Bandwidth at 99 % shall reside entirely within the Maximum Occupied Bandwidth at 99 % shall reside entirely within the Maximum Occupied Bandwidth at 99 % shall reside entirely within the Maximum Occupied Bandwidth at 99 % shall reside entirely within the Maximum Occupied Bandwidth at 99 % shall reside entirely within the Maximum Occupied Bandwidth at 99 % shall reside entirely within the Maximum Occupied Bandwidth at 99 % shall reside entirely within the Maximum Occupied Bandwidth at 99 % shall reside entirely within the Maximum Occupied Bandwidth at 99 % shall reside entirely within the Maximum Occupied Bandwidth at 99 % shall reside entirely within the Maximum Occupied Bandwidth at 99 % shall reside entirely within the Maximum Occupied Bandwidth at 99 % shall reside entirely within the Maximum Occupied Bandwidth at 99 % shall reside entirely within the Maximum Occupied Bandwidth at 99 % shall reside entirely within the Maximum Occupied Bandwidth at 99 % shall reside entirely within the Maximum Occupied Bandwidth at 99 % shall reside entirely within the Maximum Occupied Bandwidth at 99 % shall reside entirely within the Maximum Occupied Bandwidth at 99 % shall reside entirely within the Maximum Occupied Bandwidth at 99 % shall reside entirely within the Maximum Occupied Bandwidth at 99 % shall reside entirely within the 90 % sha			
Limit: Operating Channel defined by F _{low} and F _{high} .			_{ow} and F _{high} .		
	Note: For 865 MHz to 868 MHz FHSS equipment. The Maximum occu				
			shell less or equal to 50kHz. For 863 MHz		
	to 870 MHz FHSS equipment. The Maximum occupied bandwidth per hopping channel shell less or equal to 100kHz.				
	Hopping chan	iei sileli less di eq	ual to Tooki iz.		
Test setup:	Spect	rum Analyzer			
			EIIT		
			E.U.T		
		Non-Conducte	d Table		
			The state of the s		
		Ground Referen	ice Plane		
Test Procedure:	Step 1:				
rest Procedure.	•	ha FIIT aball ha at	arted on the highest energting frequency		
	· ·		arted, on the highest operating frequency		
			, with the appropriate test signal.		
	The signal attenuation shall be adjusted to ensure that the signal power				
	envelope is sufficiently above the noise floor of the analyser to avoid the				
	noise signals on either side of the power envelope being included in the				
	measurement		1		
		•			
	Step 2:		manifestation of the tops of the U.S. Const. I		
		•	peak value of the trace shall be located		
	-	ser marker placed	on this peak.		
	Step 3:				
	The 99 % occ	upied bandwidth fu	inction of the spectrum analyser shall be		
			andwidth of the signal.		
Measurement Record:		· · · · · · · · · · · · · · · · · · ·	Uncertainty: ±5%		
Test Instruments:	Refer to section	on 6.0 for details			
Test mode:	Refer to section	on 5.2 for details			

Measurement Data

Test conditions	Channel	99% Occupied Bandwidth (MHz)	FL at 99% BW(MHz)	FH at 99% BW(MHz)	Limit (dBm)	Result
NIV/NIT	Lowest	0.093	863.053	863.148		Pass
NVNT	Highest	0.094	869.853	869.948		Pass
LVHT	Lowest	0.094	863.054	863.147		Pass
LVIII	Highest	0.095	869.853	869.949		Pass
LVIT	Lowest	0.094	863.052	863.146	Within Operational	Pass
LVLT	Highest	0.095	869.855	869.947	Frequency Band 863 to 870 MHz	Pass
111/117	Lowest	0.095	863.054	863.146		Pass
HVHT	Highest	0.095	869.853	869.949		Pass
HVLT	Lowest	0.095	863.055	863.148		Pass
□VLI	Highest	0.093	869.854	869.947		Pass

Remark:

Volt= Voltage, Temp= Temperature

7.2.5 Frequency Error

Test Requirement:	ETSI EN 300 220-2 clause 4.3.3
Test Method:	ETSI EN 300 220-1 clause 5.7
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane
Test Procedure:	Step 1: Operation of the EUT shall be started on the nominal frequency as declared by the manufacturer under extreme high temperature and extreme voltage conditions. The frequency of the unmodulated carrier shall be measured and noted. Step 2: Operation of the EUT shall be started on the nominal frequency as declared by the manufacturer under extreme low temperature and extreme voltage conditions.
Measurement Record:	Uncertainty: ± 0.5ppm
Test Instruments:	Refer to section 6.0 for details
Test mode:	Refer to section 5.2 for details
Test results:	Pass

Measurement Data

Test conditions	Channel	Frequency(MHz)	A-N(KHz)	B-N(KHz)
NI/NITNI\/\	Lowest	863.1MHz	0	0
N(NTNV)	Highest	869.9 MHz	0	0
D/LITLIVA	Lowest	863.1MHz	0	0
B(HTHV)	Highest	869.9 MHz	0	0
A / L T L \ / \	Lowest	863.1MHz	0	0
A(LTLV)	Highest	869.9 MHz	0	0

Remark:HTHV is the extreme high temperature and extreme voltage condition. LTLV is the extreme low temperature and extreme voltage condition.

7.2.6 TX Out Of Band Emissions

Test Requirement:	ETSI EN 300 220-	2 clause 4.3.5					
Test Method:	ETSI EN 300 220-	1 clause 5.8.3					
Receive setup:	Table 16: Test F	Table 16: Test Parameters for Out Of Band for Operating Channel Measurement					
	Spectrum Analys Setting	ser Value		Notes			
	Centre frequency	Operating					
	Span	Frequency 6 x Operating					
	Эрап	Channel width 1 kHz	Desclution han	duridth for Out (Of Band domain		
	RBW	(see note)	measurements	awiatii ioi Out (JI Band domain		
	Detector Function	RMS	Applies only for	FLIT ganaratin	a D M2 toot oignal		
	Trace Mode	Linear AVG	An appropriate averaged to give	number of sam e a stable read	ing		
		Max Hold	Applies only for test signal.	EUT generatin	g D-M2a or D-M3		
	NOTE: If the value	of RBW used is different fr	om RBW _{REF} in c	lause 5.8.2, use	e the bandwidth		
		in clause 4.3.10.1.					
		Table 15: Emission limits i	n the Out Of Bar	nd domains			
	Domain	Frequency Ran		RBW _{REF}	Max power limi		
		f ≤ f _{low_OFB} - 400	kHZ	10 kHz 1 kHz	-36 dBm		
		flow - 200 kHz ≤ f < f _i	low_OFB - 400 kHz \leq f \leq f low_OFB - 200 kHz flow - 200 kHz \leq f $<$ f low_OFB		See Figure 6		
	OOB limits applicable to Operational Frequency	f = f _{low OFB}	JW_OFB	1 kHz 1 kHz	0 dBm		
	Band	f = f _{high_OFB}		1 kHz	0 dBm		
	(See Figure 6)	F _{high OFB} < f ≤ f _{high OFB}	+ 200 kHz	1 kHz	See Figure 6		
Limit:		F _{high_OFB} + 200 kHz ≤ f ≤ f _{high}	F_{high_OFB} + 200 kHz \leq f \leq f $_{high_OFB}$ + 400 kHz		-36 dBm		
		f = f _c - 2.5 x OC\		10 kHz 1 kHz	-36 dBm		
		•	$f_c - 2.5 \times OCW$ $f_c - 2.5 \times OCW \le f \le f_c - 0.5 \times OCW$		See Figure 5		
	OOB limits applicable to	$f = f_c - 0.5 \times OCW$ $f = f_c + 0.5 \times OCW$ $f_c + 0.5 \times OCW \le f \le f_c + 2.5 \times OCW$ $f = f_c + 2.5 \times OCW$		1 kHz 1 kHz	0 dBm		
	Operating Channel (See Figure 5)			1 kHz	0 dBm		
				1 kHz 1 kHz	See Figure 5 -36 dBm		
	f _c is the Operating F _{low_OFB} is the low F _{high_OFB} is the up	NOTE: f is the measurement frequency. f _c is the Operating Frequency. F _{low_OFB} is the lower edge of the Operational Frequency Band. F _{high_OFB} is the upper edge of the Operational Frequency Band. OCW is the operating channel bandwidth.					
Test setup: Spectrum Analyzer E.U.T							
		Non-Conducted Table					
		Ground Reference Die	ne.				
Took Day on Law	Defends do a 56	Ground Reference Pla					
Test Procedure:		3.3.4 of ETSI EN30					
Test Instruments:	Refer to section 6.	3.3.4 of ETSI EN30 0 for details					
		3.3.4 of ETSI EN30 0 for details					

Measurement Data

Domain	Test Segment (MHz)	Measurec Frequency (MHz)	Measurec Power (dBm/kHz)	Limit (dBm/kHz)	Result
	f ≤ flow_OFB - 400 kHz	862.613	-51.6	-36.0	Pass
	Flow_OFB - 400 kHz ≤ f ≤ flow_OFB - 200 kHz	862.806	-51.3	-36.0	Pass
OOB limits	flow - 200 kHz ≤ f < flow_OFB	862.847	-28.9	-20.4	Pass
applicable to	f = flow_OFB	863.023	-7.1	0	Pass
Operational	f = fhigh_OFB	869.972	-6.9	0	Pass
Frequency Band	Fhigh_OFB < f ≤ fhigh_OFB + 200 kHz	870.019	-29.2	-20.7	Pass
	Fhigh_OFB + 200 kHz ≤ f ≤ fhigh_OFB + 400 kHz	870.115	-50.6	-36.0	Pass
	Fhigh_OFB + 400 kHz ≤ f	870.426	-51.8	-36.0	Pass
	f = fc- 2.5 x OCW	862.863	-51.4	-36.0	Pass
OOB limits	fc - 2,5 x OCW ≤ f ≤ fc - 0,5 x OCW	862.849	-27.5	-20.6	Pass
applicable to	f = fc - 0,5 x OCW	862.928	-7.3	0	Pass
Operating	f = fc + 0,5 x OCW	870.072	-7.0	0	Pass
Channel	fc + 0,5 x OCW ≤ f ≤ fc + 2,5 x OCW	870.107	-28.1	-20.4	Pass
	f = fc+ 2,5 x OCW	870.138	-51.2	-36.0	Pass

7.2.7 Transient power

Test Requirement:	ETSI EN 300 220-2 Clause 4.3.6					
Test Method:	ETSI EN 300 220-1 Claus	se 5.10				
Limit:	Table 2	23: Transmitte	er Transient Pow	er limits		
	Absolute offset from centre frequency	RBW _{REF}	Peak power limit	t applicable at measur	rement points	
	≤ 400 kHz	1 kHz		0 dBm		
	> 400 kHz	1 kHz	<u> </u>	-27 dBm		
Test procedure:	The output of the EUT sh	all be conn	ected to a sp	ectrum analyse	er or equivalent	
	measuring equipment.					
	The measurement shall be					
		entre frequency shall be set to an offset from the operating centre frequency. These offset values and their corresponding RBW configurations are listed in				
		neil corres	ponding RBV	v configurations	s are listed in	
	Table 24.	le 24: RBW fo	or Transient Me	asurement		
	Measurement points: offset from centre frequency		Analyser RE	BW	RBW _{REF}	
	-0,5 x OCW - 3 kHz		1 kHz			
	0,5 x OCW + 3 kHz				1kHz	
	Not applicable for OCW < 25 kHz ±12.5 kHz or ±OCW		BW pattern 1, 3, 1	0 kHz) ≤ Offset	4111	
	whichever is the greater	,	frequency/6 (see		1 kHz	
	-0,5 x OCW - 400 kHz		100 kHz		1 kHz	
	0,5 x OCW + 400 kHz -0,5 x OCW -1 200 kHz		000111		4111	
	0,5 x OCW + 1 200 kHz NOTE: Max (RBW pattern 1, 3		300 kHz		1 kHz	
	implemented 1, 3, 10 k EXAMPLE: If OCW is 25 kH 3 kHz. The rest	Hz RBW filter b Iz then the RBV of the analyser	oandwidth increme V value correspon settings are listed		um analysers. set frequency is CCW is 250 kHz	
	Table 2	25: Parameter	s for Transient I	Measurement		
	Spectrum Analyser Setting	Va	lue	Not		
	VBW/RBW	1	10	At higher RBW value clipped to its maximu		
	Sweep time) ms		Tura e	
	RBW filter Trace Detector Function		ssian MS			
	Trace Mode		hold			
	Sweep points		01			
	Measurement mode NOTE: The ratio between the nui		ous sweep points and the swee	Lep time shall be the sa	me ratio as above if	
	different number of sweep	p points is used	-	-		
	The used modulation sha					
	Table 25 and a measurer					
	EUT shall transmit at leas					
	recorded and the measur	ement sha	II be repeated	at each offset	trequency	
	mentioned in Table 24.					
	The recorded power value RBWREF by the formula			power values r	neasured in	
Measurement Record:				Uncertai	inty: ± 1.5dB	
Test Instruments:	Refer to section 6.0 for de	etails				
Test mode:	Refer to section 5.2 for de	etails				
Test results:	Pass					

Measurement Data

Report No.: GTS201903000025E02

The lowest channel							
Frequency offset	Peak Power level (dBm)	Limit (dBm)	Result				
F _c -0.5*OCW-1200kHz	-52.83	-27					
F _c -0.5*OCW-400kHz	-51.07	-27					
F _c -OCW	-45.25	0					
F _c -0.5*OCW-3kHz	-40.21	0	Pass				
F _c +0.5*OCW+3kHz	-41.36	0	Pass				
F _c +OCW	-45.36	0					
F _c +0.5*OCW+400kHz	-52.05	-27					
F _c +0.5*OCW+1200kHz	-53.17	-27					
	The highe	st channel					
Frequency offset	Peak Power level (dBm)	Limit (dBm)	Result				
F _c -0.5*OCW-1200kHz	-53.12	-27					
F _c -0.5*OCW-400kHz	-52.43	-27					
F _c -OCW	-47.31	0					
F _c -0.5*OCW-3kHz	-41.52	0	Daga				
F _c +0.5*OCW+3kHz	-41.69	0	Pass				
F _c +OCW	-47.70	0					
F _c +0.5*OCW+400kHz	-52.40	-27					
F _c +0.5*OCW+1200kHz	-53.81	-27					

7.2.8 Adjacent Channel Power

ı			
ETSI EN 300 220-2 Clause 4.3.7.2			
ETSI EN 300 220-1 Clause 5.11			
Table 26: Adjacent channel power limits for transmitters with OCW ≤ 25 kHz			
		Adjacent Channel power integrated over 0,7 x OCW	Alternate Adjacent Channel power integrated over 0,7 x OCW
OCW < 20 kHz	Normal test conditions	-20 dBm	-20 dBm
OCW < 20 KHZ	Extreme test conditions	-15 dBm	-20 dBm
OCW > 20 kHz			-40 dBm
	Extreme test conditions	-32 dBm	-37 dBm
Center frequency: The nominal operating frequency RBW=100Hz VBW>=3*RBW			
Span:>=5 operating channel width			
Trace detector: RMS			
Trace mode: Max hold			
Uncertainty: ± 1.5dB			
Refer to section 6.0 for details			
Refer to section 5.2 for details			
N/A (Not applicable for OCW ≥25KHz)			
	Center frequence RBW=100Hz VBW>=3*RB Span:>=5*op Trace detecte Trace mode: Refer to sect	Table 26: Adjacent channel por CCW < 20 kHz OCW ≥ 20 kHz OCW ≥ 20 kHz OCW ≥ 20 kHz Normal test conditions Extreme test condit	ETSI EN 300 220-1 Clause 5.11 Table 26: Adjacent channel power limits for transmitte Adjacent Channel power integrated over 0,7 x OCW

7.2.9 Adaptive Power Control

Only used in 870,000 MHz to 875,800 MHz band equipment.

7.2.10 TX FHSS

Test Requirement:	ETSI EN 300 220	ETSI EN 300 220-2 Clause 4.3.10		
Test Method:	ETSI EN 300 220	ETSI EN 300 220-1 Clause 4.3.5		
Limit:		Table 2: Number of Hop Channels		
	Operational frequency band	Number of hop channels	Maximum occupied bandwidth per hopping channel	Specific requirements
	865 MHz to 868 MHz	≥ 58	≤ 50 kHz	< 1 % TX duty cycle (see note)
	863 MHz to 870 MHz NOTE: The duty cycle :	≥ 47	≤ 100 kHz	< 0,1 % TX duty cycle (see note)
	c) For FHSS tran		h a dwell time less thar	n 10 ms, a 0,1 % duty
	d) Each hopping epoch.	channel of the	e shall be occupied at le	east once during an
		e) The return time to a hop channel shall be less than or equal to the lower of an epoch or 20 seconds.		
	f) The dwell time	shall not exce	ed 400 ms.	
			S equipment.The Maxii I shell less or equal to	•
Test procedure:	Center frequency	: The nominal	operating frequency	
	RBW=100kHz			
	VBW>=3*RBW			
	Trace detector: F			
Measurement Record:		Uncertainty: ± 1.5dB		
Test Instruments:	Refer to section	Refer to section 6.0 for details		
Test mode:	Refer to section	Refer to section 5.2 for details		
Test results:	Pass	Pass		

Measurement Data

Parameter	Manufacturer declared	Limit	Test Result
The number of hopping channels	47	≥47	Pass
The return time to a hop channel	2s	≤20s	Pass
Dwell time	100ms	≤400ms	Pass
The hop channel band width	100kHz	≤100kHz	Pass

Note: The above parameters have been declared by manufacturer.

7.2.11 TX Behaviour under Low-voltage Conditions

Test Requirement:	ETSI EN 300 220-2 Clause 4.3.8		
Test Method:	ETSI EN 300 220-1 Clause 5.12		
Receiver setup:	RBW=30Hz, VBW=100Hz, Detector= peak		
Limit:	Equipment Type	Limit	
	channelized equipment	limits stated in clause 8.1.4	
	non aboundized equipment	1>.within the assigned operating frequency band. And	
	non-channelized equipment	2>.the radiated or conducted power is greater than the spurious emission limits	
Test procedure:		be measured, where possible in the absence smitter connected to an artificial antenna.	
	2. A transmitter without a 50 0 fixture connected to an artif	output connector may be placed in a test icial antenna.	
	3. The measurement shall be humidity conditions,	made under normal temperature and	
	battery power source, the v	a DC power source take place the original oltage from the test power source shall be attreme test voltage limit towards zero.	
	Test the fundamental carries supply voltage	er frequency of the transmitter with nominal	
	6. Whilst the voltage is reduce	ed the carrier frequency shall be monitored.	
	7. transmitter shall be operate under normal test condition	ed at the maximum rated carrier power level, s;	
	8. Record the woking frequen	су.	
Measurement Record:		Uncertainty: ±1 x 10 ⁻⁷	
Test Instruments:	Refer to section 6.0 for details		
Test mode:	Refer to section 5.2 for details		
Test results:	Pass		

Measurement Data:

Voltage (AC)	Channel	Frequency spot (MHz)	Power (dBm)	Limit	Result
\/ 220\/	Lowest	863.1MHz	10.20		Pass
V _{normal} =230V	Highest	869.9MHz	10.27	Within Operational Frequency Band	Pass
V _{extreme} =100V	Lowest	863.1MHz	10.21	863 to 870 MHz	Pass
	Highest	869.9MHz	10.26		Pass

Remarks:

- 1. The EUT is belong to non-channelized equipment.
- 2. V_{extreme} is the lowest operation voltage.

7.2.12 Transmit spurious emissions

Test Requirement:	ETSI EN 300 220-2 Clause 4.2.2		
Test Method:	ETSI EN 300 220-1 Clause 5.9		
	Table 20: Parameters for TX Spurious Radiations Measurement		
	Operating Mode	Frequency Range	RBW _{REF} (see note 2)
	Transmit mode	9 kHz ≤ f < 150 kHz 150 kHz ≤ f < 30 MHz	1 kHz 10 kHz
		30 MHz ≤ f < f _c - m	100 kHz
		$f_c - m \le f < f_c - n$	10 kHz
		$f_c - n \le f < f_c - p$	1 kHz
Receiver setup:		$f_c + p < f \le f_c + n$	1 kHz
		$f_c + n < f \le f_c + m$ $f_c + m < f \le 1 \text{ GHz}$	10 kHz 100 kHz
		1 GHz < f ≤ 6 GHz	1 MHz
	NOTE 1: f is the measurement frequent f _c is the Operating Frequency m is 10 x OCW or 500 kHz, v n is 4 x OCW or 100 kHz, wh p is 2,5 x OCW. NOTE 2: If the value of RBW used for clause 4.3.10.1.	y. whichever is the greater. whichever is the greater.	_F , use bandwidth correction from
Test Frequency range:	25MHz to 6GHz		
Limit:	Frequency	Limit(operation)	Limit(standby)
LIIIII.	47 MHz to 74 MHz	Limitoperation	Litting standby)
	87.5 MHz to 118 MHz 174 MHz to 230 MHz	4nW(-54dBm)	2nW(-57dBm)
	470 MHz to 790 MHz		
	Other frequencies	250nW(-36dBm)	2nW(-57dBm)
	below 1000 MHz	` '	· , , , , , , , , , , , , , , , , , , ,
	Above 1000 MHz	1uW(-30dBm)	20nW(-47dBm)
Test setup:	Below 1GHz		
	Antenna Tower Antenna Tower Ground Reference Plane Test Receiver		
	Above 1GHz		
	AE EUT (Turntable)	Horn Antanna Tow	ver
	11		

Global United Technology Services Co., Ltd.

No. 123- 128, Tower A, Jinyuan Business Building, No.2, Laodong Industrial Zone,

Xixiang Road, Baoan District, Shenzhen, Guangdong, China

Report No.: GTS201903000025E02 The following test procedure as below: Below 1GHz: 1. On the test site as test setup graph above, the EUT shall be placed at the 1.5m support on the turntable and in the position closest to normal use as declared by the provider. 2. The test antenna shall be oriented initially for vertical polarization and shall be chosen to correspond to the frequency of the transmitter. The output of the test antenna shall be connected to the measuring receiver. 3. The transmitter shall be switched on, if possible, without modulation and the measuring receiver shall be tuned to the frequency of the transmitter 4. The test antenna shall be raised and lowered from 1m to 4m until a maximum signal level is detected by the measuring receiver. Then the turntable should be rotated through 360° in the horizontal plane, until the maximum signal level is detected by the measuring receiver. 5. Repeat step 4 for test frequency with the test antenna polarized horizontally. 6. Remove the transmitter and replace it with a substitution antenna (the antenna should be half-wavelength for each frequency involved). The center of the substitution antenna should be approximately at the same location as the center of the transmitter. At the lower frequencies, where the substitution antenna is very long, this will be impossible to achieve when the antenna is polarized vertically. In such case the lower end of the antenna should be 0.3 m above the ground. 7. Feed the substitution antenna at the transmitter end with a signal generator connected to the antenna by means of a nonradiating cable. With the antennas at both ends vertically polarized, and with the signal generator tuned to a particular test frequency, raise and lower the test antenna to obtain a maximum reading at the spectrum analyzer. Adjust the level of the signal generator output until the previously recorded maximum reading for this set of conditions is obtained. This should be done carefully repeating the adjustment of the test antenna and generator output. 8. Repeat step 7 with both antennas horizontally polarized for each test frequency. 9. Calculate power in dBm into a reference ideal half-wave dipole antenna by reducing the readings obtained in steps 7 and 8 by the power loss in the cable between the generator and the antenna, and further corrected for the gain of the substitution antenna used relative to an ideal half-wave dipole antenna by the following formula: ERP(dBm) = Pg(dBm) - cable loss (dB) + antenna gain (dBd)where: Pg is the generator output power into the substitution antenna. Above 1GHz: Different between above is the test site, change from Semi- Anechoic Chamber to fully Anechoic Chamber, and the test antenna do not need to raise from 1 to 4m, just test in 1.5m height. Measurement Record: Uncertainty: ± 6dB

Test Instruments:

Test mode:

Test results:

Pass

Refer to section 6.0 for details

Refer to section 5.2 for details

Xixiang Road, Baoan District, Shenzhen, Guangdong, China

Measurement Data

Report No.: GTS201903000025E02

		The lowest char	nnel	
Frequency (MHz)	Spurious	Emission	Limit (dBm)	Test Result
riequelicy (Minz)	polarization	Level(dBm)	Lillil (dBill)	rest Result
110.18	Vertical	-70.11	-54.00	
520.99	V	-66.12	-54.00	
1726.20	V	-47.17	-30.00	
2589.30	V	-48.88	-30.00	
3452.40	V	-50.07	-30.00	
4315.50	V	-51.47	-30.00	Dana
101.91	Horizontal	-71.27	-54.00	Pass
813.96	Н	-68.26	-54.00	
1726.20	Н	-48.29	-30.00	
2589.30	Н	-49.79	-30.00	
3452.40	Н	-50.81	-30.00	
4315.50	Н	-52.24	-30.00	
	•	The highest cha	nnel	•
F (8411-)	Spurious	Emission	Line (Company)	Tank Banadi
Frequency (MHz)	polarization	Level(dBm)	Limit (dBm)	Test Result
97.97	Vertical	-72.31	-54.00	
658.30	V	-68.55	-54.00	
1739.80	V	-46.55	-30.00	
2609.70	V	-47.49	-30.00	
3479.60	V	-49.06	-30.00	
4349.50	V	-50.38	-30.00	
90.27	Horizontal	-71.86	-54.00	Pass
831.39	Н	-69.09	-54.00	
1739.80	Н	-47.57	-30.00	
2609.70	Н	-48.57	-30.00	
3479.60	Н	-49.81	-30.00	
0 11 0.00				

There were no emissions found above system measuring level (at least 10 dB below the limit)

7.3 Receiver Requirements

Receiver Classification, Table 1 of ETSI EN 300 220-1.

Rx Class	Relevant Rx Clauses	Risk assessment of Rx performance
1	8.3, 8.4, 8.5, 8.6	Category 1 is a high performance level of receiver. In particular to be used where the operation of a SRD may have
	, , ,	inherent safety of human life implications.
4.5	0.4.0.0	Category 1.5 is an improved performance level of receiver
1.5	8.4, 8.6	category 2.
2		Category 2 is standard performance level of receiver.
3	8.4, 8.6	Category 3 is a low performance level of receiver. Manufacturers have to be aware that category 3 receivers are not able to work properly in case of coexistence with some services such as a mobile radio service in adjacent bands. The manufacturer shall provide another mean to overcome the
	weakness of the radio link or accept the failure.	
NOTE: Th	ne receiver category sho	ould be stated in both the test report and in the user's manual for the

equipment. Receiver category 3 will be withdrawn after December 31st, 2018.

The EUT (Receiver part) belong to Category 2 with no Polite spectrum access function.

7.3.1 Receiver sensitivity

Not applicable, since the test applied to Polite spectrum access equipment.

7.3.2 Clear Channel Assessment threshold

Not applicable, since the test applied to Polite spectrum access equipment.

7.3.3 Polite spectrum access timing parameters

Not applicable, since the test applied to Polite spectrum access equipment.

7.3.4 Adaptive Frequency Agility

Not applicable, since the test applied to AFA quipment.

7.3.5 Adjacent channel selectivity

Not applicable, since the test applied to Category 1 equipment.

7.3.6 Receiver saturation at Adjacent Channel

Not applicable, since the test applied to Category 1 equipment.

7.3.7 Spurious response rejection

Not applicable, since the test applied to Category 1 equipment.

7.3.8 Behaviour at high wanted signal level

Not applicable, since the test applied to Category 1 equipment.

7.3.9 Bi-Directional Operation Verification

Not applicable, since this product is not support Bi-Directional operation function.

7.3.10 Blocking

Report No.: GTS201903000025E02

Test Requirement:	ETSI EN 300 220-2 Clause 4.4.2			
Test Method:	ETSI EN 300 220-1 clause 5.18	ETSI EN 300 220-1 clause 5.18		
Limit:	Table 43: Blocking level parameters for RX category 1			
	Requirement	Limits		
	·	Receiver category 1		
	Blocking at ±2 MHz from Centre Frequency	≥ -20 dBm		
	Blocking at ±10 MHz from Centre Frequency Blocking at ±5 % of Centre Frequency or 15 MHz,	≥ -20 dBm		
	whichever is the greater	≥ -20 dBm		
	Table 42: Blocking level pa	arameters for RX category 1.5		
	Requirement	Limits Receiver category 1.5		
	Blocking at ±2 MHz from OC edge f _{high} and f _{low}	≥ -43 dBm		
	Blocking at ±10 MHz from OC edge f _{high} and f _{low}	≥ -33 dBm		
	Blocking at ±5 % of Centre Frequency or 15 MHz,	2 -33 dBiffi		
	whichever is the greater	≥ -33 dBm		
	Table 41: Blocking level p	parameters for RX category 2		
	Requirement	Limits		
		Receiver category 2		
	Blocking at ±2 MHz from OC edge f _{high} and f _{low}	≥ -69 dBm		
	Blocking at ±10 MHz from OC edge f _{high} and f _{low}	≥ -44 dBm		
	Blocking at ±5 % of Centre Frequency or 15 MHz, whichever is the greater	≥ -44 dBm		
		arameters for RX category 3		
	Requirement	Limits		
	Requirement	Receiver category 3		
	Blocking at ±2 MHz from OC edge fhigh and flow	≥ -80 dBm		
	Blocking at ±10 MHz from OC edge f _{high} and f _{low}	≥ -60 dBm		
	Blocking at ±5 % of Centre Frequency or 15 MHz, whichever is the greater	≥ -60 dBm		
	$A = 10 \log (BW_{kHz} / 16 \text{ kHz}) BW \text{ is th}$	e receiver bandwidth		
Test setup:	Signal Generator A			
	Combiner	EUT		
	Signal Generator B			
Test procedure:	Two signal generators A and B sh combining network to the receiver	all be connected to the receiver via a antennaconnector.		
	Signal generator A shall be at the normal modulation of the wanted s unmodulated.	nominal frequency of the receiver, with signal. Signal generator B shall be		
		at at frequencies of the unwanted signal MHz, avoiding those frequencies at		
	4. Initially signal generator B shall be generator A the level which still give established, however, the level at below the sensitivity limit given in generator A shall then be increased	ves sufficient response shall be the receiver input shall not be adjuste clause 8.1.4. The output level of		

Report No.:	GTS201903000025E02
-------------	--------------------

	Report No.: G13201903000023E02
	recorded. Alternatively, equipment having a dedicated or integral antenna may use a radiated measurement setup. For this, a test site from clause A.1 shall be selected and the requirements from clauses A.2 and A.3 apply.
	6. Signal generators A and B together with a combiner shall be placed outside the anechoic chamber and a TX test antenna shall be placed with the EUT's antenna polarisation. The EUT shall be placed at the location of the turntable at the orientation of the most sensitive position. Generator A shall be set in order to reach the EUT sensitivity limit +3 dB.
	 The procedure shall be the same as for the conducted measurement. Bloking is the difference between signal generator B and signal generator A levels.
Test Instruments:	Refer to section 6.0 for details
Test mode:	Refer to section 5.2 for details
Test results:	Pass

Measurement data:

The lowest channel						
Frequency offset	Signal generator A level (dB)	Blocking level (dB)	Limit (dB)	Result		
Flow-5% of Fc	-91.00	-32.00	-44.00	Pass		
Flow-10MHz	-91.00	-35.00	-44.00			
Flow-2MHz	-91.00	-41.00	-69.00			
FHigh+2MHz	-91.00	-42.00	-69.00			
FHigh+10MHz	-91.00	-35.00	-44.00			
FHigh+5% of Fc	-91.00	-33.00	-44.00			
	Th	ne highest channel				
Frequency offset	Signal generator A level (dB)	Blocking level (dB)	Limit (dB)	Result		
Flow-5% of Fc	-91.00	-32.00	-44.00			
Flow-10MHz	-91.00	-35.00	-44.00			
Flow-2MHz	-91.00	-41.00	-69.00	Pass		
FHigh+2MHz	-91.00	-42.00	-69.00			
FHigh+10MHz	-91.00	-35.00	-44.00			
FHigh+5% of Fc	-91.00	-33.00	-44.00			

Remark: The provider declared that the receiver bandwidth is 200kHz.

7.3.11 Spurious emissions

Test Method:					
rest Metriod.	ETSI EN 300 220-1 Clause 5.9.1.2				
	Table 20: Parameters for TX Spurious Radiations Measurement				
	Operating Mode	Frequency Range	RBW _{REF} (see note 2)		
		9 kHz ≤ f < 150 kHz 150 kHz ≤ f < 30 MHz	1 kHz 10 kHz		
		30 MHz ≤ f < f _c - m	100 kHz		
		$f_c - m \le f < f_c - n$	10 kHz		
		f _c - n ≤ f < f _c - p	1 kHz		
Receiver setup:		$f_c + p < f \le f_c + n$ $f_c + n < f \le f_c + m$	1 kHz 10 kHz		
•		f _c + m < f ≤ 1 GHz	100 kHz		
	NOTE 1: f is the measurement frequency.	1 GHz < f ≤ 6 GHz	1 MHz		
	f _c is the Operating Frequency. m is 10 x OCW or 500 kHz, whichever is the g n is 4 x OCW or 100 kHz, whichever is the gre p is 2,5 x OCW. NOTE 2: If the value of RBW used for measurement is clause 4.3.10.1.	eater.	ndwidth correction from		
Test Frequency range:	25MHz to 6GHz				
Limit:	Frequency	L	Limit		
	Other frequencies		2nW(-57dBm)		
	below 1000 MHz	2nW(-			
	Above 1000 MHz	20n\//	-47dBm)		
Test setup:	Below 1GHz	201177	71 (IDIII)		
	Antenna Tower Antenna Tower (Turntable) Ground Reference Plane Test Receiver Pre- Amplifier Controlles				
	Above 1GHz				
	AE EUT Ground Reference Test Receiver	Horn Antenna Towe			
Toot propodices	Cubatitutian mathed was next and	to dotarmine the	uol CDD amiaria		
Test procedure:	Substitution method was performed to determine the actual ERP emissio levels of the EUT. The following test procedure as below:				

Global United Technology Services Co., Ltd.

No. 123- 128, Tower A, Jinyuan Business Building, No.2, Laodong Industrial Zone,

Xixiang Road, Baoan District, Shenzhen, Guangdong, China

Report No.: GTS201903000025E02 Below 1GHz: 1. On the test site as test setup graph above, the EUT shall be placed at the 1.5m support on the turntable and in the position closest to normal use as declared by the provider. 2. The test antenna shall be oriented initially for vertical polarization and shall be chosen to correspond to the frequency of the transmitter. The output of the test antenna shall be connected to the measuring receiver. 3. The transmitter shall be switched on, if possible, without modulation and the measuring receiver shall be tuned to the frequency of the transmitter under test. 4. The test antenna shall be raised and lowered from 1m to 4m until a maximum signal level is detected by the measuring receiver. Then the turntable should be rotated through 360° in the horizontal plane, until the maximum signal level is detected by the measuring receiver. 5. Repeat step 4 for test frequency with the test antenna polarized horizontally. 6. Remove the transmitter and replace it with a substitution antenna (the antenna should be half-wavelength for each frequency involved). The center of the substitution antenna should be approximately at the same location as the center of the transmitter. At the lower frequencies, where the substitution antenna is very long, this will be impossible to achieve when the antenna is polarized vertically. In such case the lower end of the antenna should be 0.3 m above the ground. 7. Feed the substitution antenna at the transmitter end with a signal generator connected to the antenna by means of a nonradiating cable. With the antennas at both ends vertically polarized, and with the signal generator tuned to a particular test frequency, raise and lower the test antenna to obtain a maximum reading at the spectrum analyzer. Adjust the level of the signal generator output until the previously recorded maximum reading for this set of conditions is obtained. This should be done carefully repeating the adjustment of the test antenna and generator output. 8. Repeat step 7 with both antennas horizontally polarized for each test frequency. 9. Calculate power in dBm into a reference ideal half-wave dipole antenna by reducing the readings obtained in steps 7 and 8 by the power loss in the cable between the generator and the antenna, and further corrected for the gain of the substitution antenna used relative to an ideal half-wave dipole antenna by the following formula: ERP(dBm) = Pg(dBm) - cable loss (dB) + antenna gain (dBd)Pg is the generator output power into the substitution antenna. Above 1GHz: Different between above is the test site, change from Semi- Anechoic Chamber to fully Anechoic Chamber, and the test antenna do not need to raise from 1 to 4m, just test in 1.5m height. Measurement Record: Uncertainty: ± 6dB Test Instruments: Refer to section 6.0 for details

Test mode:

Test results:

Pass

Refer to section 5.2 for details

Xixiang Road, Baoan District, Shenzhen, Guangdong, China

Measurement Data

		The lowest char	nnel	
Frequency (MHz)	Spurious Emission		Limit (JD)	Tarat Daranti
	polarization	Level(dBm)	Limit (dBm)	Test Result
87.24	Vertical	-71.82		
480.04	V	-70.93		
1726.20	V	-56.16		
2589.30	V	-53.96		
3452.40	V	-52.59	2nW/ -57dBm below 1GHz, 20nW/ -47dBm above 1GHz.	Pass
4315.50	V	-51.12		
78.76	Horizontal	-75.93		
788.68	Н	-70.80		
1726.20	Н	-56.28		
2589.30	Н	-53.74		
3452.40	Н	-52.49		
4315.50	Н	-51.87		
		The highest cha	nnel	
Frequency (MHz)	Spurious Emission		Limit (dDm)	Toot Booult
	polarization	Level(dBm)	Limit (dBm)	Test Result
69.89	Vertical	-70.12		
753.14	V	-68.12		
1739.80	V	-57.35		
2609.70	V	-54.39		
3479.60	V	-53.57	2nW/ -57dBm below 1GHz, 20nW/ -47dBm above 1GHz.	Pass
4349.50	V	-51.60		
78.80	Horizontal	-75.96		
551.96	Н	-70.41		
1739.80	Н	-54.86		
2609.70	Н	-53.74		
3479.60	Н	-54.09		
	1			1

Rx in standby Mode

-52.98

There were no emissions found above system measuring level (at least 10 dB below the limit)

4349.50

Н

8 Test Setup Photo

Reference to the appendix I for details.

9 EUT Constructional Details

Reference to the appendix II for details.

-----End-----