LGT-92 LoRaWAN GPS Tracker User Manual

Document Version: 1.0

Image Version: v1.3

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>Release</td>
<td>2018-Dec-12</td>
</tr>
<tr>
<td>1.0.1</td>
<td>Correct GPS payload format in TTN</td>
<td>2019-Jan-23</td>
</tr>
</tbody>
</table>

LGT-92 LoRa GPS Tracker User Manual
1. Introduction .. 4
 1.1 What is LGT-92 LoRa GPS Tracker ... 4
 1.2 Specifications .. 5
 1.3 Features .. 6
 1.4 Applications ... 6

2. Use LGT-92 with stock LoRaWAN firmware ... 7
 2.1 How it works? .. 7
 2.2 Quick guide to connect to LoRaWAN server (OTAA) ... 7
 2.3 Uplink Payload .. 10
 2.3.1 Payload Analyze ... 10
 2.3.2 Add Payload format in TTN ... 10
 2.4 Downlink Payload ... 12
 2.5 Firmware Change Log ... 12

3. Use AT Command .. 13
 3.1 Access AT Command ... 13
 3.2 Common AT Command Sequence .. 15
 3.2.1 Multi-channel ABP mode (Use with SX1301/LG308) .. 15
 3.2.2 Single-channel ABP mode (Use with LG01/LG02) ... 15

4. Upload Firmware .. 16

5. Developer Guide .. 18
 5.1 Source Code ... 18
 5.2 Compile Source Code ... 18
 5.2.1 Set up Keil compile environment .. 18
 5.2.2 Install STM32L0 Series Device .. 21
 5.2.3 Compile Source Code .. 22

6. FAQ ... 23
 6.1 Why there is 433/868/915 version? .. 23
 6.2 What is the frequency range of LT LoRa part? ... 24
 6.3 How to change the LoRa Frequency Bands/Region? ... 25
 6.4 Can I use Private LoRa protocol? ... 25
6.5 How to set up LGT-92 to work in 8 channel mode in US915, AU915, CN470 bands? 26

6.6 What is the pin mapping for the USB program cable? ... 26

6.7 How to set up LGT-92 to work with Single Channel Gateway such as LG01/LG02? 27

7. Order Info .. 29

8. Packing Info ... 29

9. Support ... 29

10. Reference .. 30
1. Introduction

1.1 What is LGT-92 LoRa GPS Tracker

LGT-92 is a Long Range / low power consumption LoRaWAN GPS tracker. LGT-92 get user’s location info via GPS and send it to IoT server via LoRaWAN wireless network.

Compare to traditional GPS tracker, LGT-92 use much lower power consumption hence can last for longer time. It doesn’t need cellular service; system integrator can build their own tracking network base on LoRa technology.

LGT-92 uses STM32L0x chip from ST, STM32L0x is the ultra-low-power STM32L072xx microcontrollers incorporate the connectivity power of the universal serial bus (USB 2.0 crystal-less) with the high-performance ARM® Cortex®-M0+ 32-bit RISC core operating at a 32 MHz frequency, a memory protection unit (MPU), high-speed embedded memories (192 Kbytes of Flash program memory, 6 Kbytes of data EEPROM and 20 Kbytes of RAM).

LGT-92 includes a low power GPS module L70 and 9-axis accelerometer for motion and attitude detection. The power for both of the GPS module and accelerometer can be controlled by MCU to achieve the best energy profile for different applications.

LGT-92 is powered by 1000mA Li-on battery, user can program the device to work from weeks to months depends on the target use case.

LGT-92 is an open source product, it is based on the STM32Cube HAL drivers and lots of libraries can be found in ST site for rapid development.
1.2 Specifications

Micro Controller:
- STM32L072CZT6 MCU
- MCU: STM32L072CZT6
- Flash: 192KB
- RAM: 20KB
- EEPROM: 6KB
- Clock Speed: 32Mhz

Common DC Characteristics:
- Supply Voltage: 2.1v ~ 3.6v
- Operating Temperature: -40 ~ 85°C

LoRa Spec:
- Frequency Range,
 - Band 1 (HF): 862 ~ 1020 Mhz
 - or
 - Band 2 (LF): 410 ~ 528 Mhz
- 168 dB maximum link budget.
- +20 dBm - 100 mW constant RF output vs.
- +14 dBm high efficiency PA.
- Programmable bit rate up to 300 kbps.
- High sensitivity: down to -148 dBm.
- Bullet-proof front end: IIP3 = -12.5 dBm.
- Excellent blocking immunity.
- Low RX current of 10.3 mA, 200 nA register retention.
- Fully integrated synthesizer with a resolution of 61 Hz.
- FSK, GFSK, MSK, GMSK, LoRaTM and OOK modulation.
- Built-in bit synchronizer for clock recovery.
- Preamble detection.
- 127 dB Dynamic Range RSSI.
- Automatic RF Sense and CAD with ultra-fast AFC.
- Packet engine up to 256 bytes with CRC.
- LoRaWAN 1.0.2 Specification

Battery:
- 1000mAh Li-on rechargeable battery

Power Consumption
- Sleeping Mode: 77uA
- LoRa Transmit Mode: 125mA @ 20dBm 44mA @ 14dBm
1.3 Features

- LoRaWAN 1.0.2 Class A, Class C
- STM32L072CZT6 MCU
- SX1276/78 Wireless Chip
- Pre-load bootloader on USART1/USART2
- MDK-ARM Version 5.24a IDE
- Preamble detection
- Frequency bands CN470/EU433/KR920/US915/IN865
- EU868/AS923/AU915
- Open source hardware / software
- Regular/ Real-time GPS tracking
- Built-in 9 axis accelerometer (MPU9250)
- Motion sensing capability
- Power Monitoring
- Charging clip with USB port
- 1000mA Li-on Battery power
- Tri-color LED, Alarm button

1.4 Applications

- Smart Buildings & Home Automation
- Logistics and Supply Chain Management
- Significant Assets management.
- Human tracking
2. Use LGT-92 with stock LoRaWAN firmware

2.1 How it works?
The LGT-92 is pre-loaded with a firmware and is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, user just need to input the OTAA keys in the LoRaWAN IoT server and power on the LGT-92. It will auto join the network via OTAA.

In case user can’t set the OTAA keys in the LoRaWAN OTAA server and has to use the keys from the server. User can use AT Command to set the keys in LGT-92.

2.2 Quick guide to connect to LoRaWAN server (OTAA)
Here is an example for how to join the TTN LoRaWAN Network. Below is the network structure, we use LG308 as LoRaWAN gateway in this example.

![LGT-92 in a LoRaWAN Network](image)

The LG308 is already set to connect to TTN network. So what we need to now is only configure the TTN:

Step 1: Create a device in TTN with the OTAA keys from LGT-92.
Each LGT-92 is shipped with a sticker with the default device EUI as below:
User can enter this key in their LoRaWAN Server portal. Below is TTN screen shot:

Add APP EUI in the application

Add APP KEY and DEV EUI
Step 2: Power on LGT-92 LoRaWAN GPS Tracker

Step 3: LGT-92 will auto join to the TTN network. After join success, LGT92 will start to upload message to IoT server.

By default, the upload period is 5 minutes. In the start of each period, LGT-92 will try to get GPS signal and the green LED will blink. Once LGT-92 get the GPS info, it will upload a LoRa message include battery / GPS info/ X,Y axis info. If LGT-92 can’t get GPS info into 2 minutes, it will still upload the message but the GPS info will be all 00.
2.3 Uplink Payload

2.3.1 Payload Analyze
The uplink payload includes totally 12 bytes. Uplink packets use FPORT=2 and every 5 minutes send one uplink by default.

<table>
<thead>
<tr>
<th>Size(bytes)</th>
<th>Value</th>
<th>Latitude</th>
<th>Longitude</th>
<th>BAT</th>
<th>X</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Example:
- Latitude: 06765f ⇒ if (0x06765f & 0x800000 = 0): value = 0x06765f /10000 = 42.3519
- Longitude: F2960a ⇒ if (0xF2960a & 0x800000 = 1): value = (0xF2960a – 0x 100000)/10000 -87.9094
- BAT: Ex1: 0x0845 ⇒ 3850mV
- X: 04D2 = if (0x04D2 & 0x8000 = 0): value = 0x04D2 /1000 = +1234 ⇒ +1.234G
- Y: FB2E =if (0xFB2E & 0x8000 = 1): value = (0xFB2E - 0x10000)/1000(dec) ⇒ -1.234G

2.3.2 Add Payload format in TTN
In TTN, use can add a custom payload so it shows friendly.
In the page Applications --> Payload Formats --> Custom --> decoder

Add below code:

```javascript
//The function is :
function Decoder(bytes, port) {
  // Decode an uplink message from a buffer
  // (array) of bytes to an object of fields.
  var value=bytes[0]<<16 | bytes[1]<<8 | bytes[2];
  if(bytes[0] & 0x80)
```
```javascript
var value = 0xFFFFF000000;

var latitude = value / 10000; // gps latitude

var longitude = value / 10000; // gps longitude

var batV = value / 1000; // Battery, units: V

var roll = value / 100;

var pitch = value / 100;

return {
  Latitude: latitude,
  Longitude: longitude,
  Roll: roll,
  Pitch: pitch,
  BatV: batV
};
```

Save the change the uplink message will be parsed. As below:
2.4 Downlink Payload

2.5 Firmware Change Log
3. Use AT Command

3.1 Access AT Command

LGT-92 supports AT Command set in stock firmware. User can use a USB to TTL adapter to connect to LGT-92 for using AT command, as below.

In PC, User needs to set serial tool baud rate to **9600** to access serial console for LGT-92. LGT-92 will output system info once power on and user will be able to send AT commands:
Below are the available commands, a more detail AT Command manual can be found at AT Command Manual.

General Command

- AT: Attention
- AT?: Short Help
- ATZ: MCU Reset
- AT+TDC: Application Data Transmission Interval

Keys, IDs and EUIs management

- AT+APPEUI: Application EUI
- AT+APPKEY: Application Key
- AT+APPSKEY: Application Session Key
- AT+DADDR: Device Address
- AT+DEUI: Device EUI
- AT+NWKID: Network ID (You can enter this command change only after successful network connection)
- AT+NWKSKEY: Network Session Key

Joining and sending date on LoRa? network

- AT+CFM: Confirm Mode
- AT+CFS: Confirm Status
- AT+JOIN: Join LoRa? Network
- AT+NJM: LoRa? Network Join Mode
- AT+NJS: LoRa? Network Join Status
- AT+RECV: Print Last Received Data in Raw Format
- AT+RECVB: Print Last Received Data in Binary Format
- AT+SEND: Send Text Data
- AT+SENB: Send Hexadecimal Data

LoRa network management

- AT+ADR: Adaptive Rate
- AT+CLASS: LoRa Class (Currently only support class A)
- AT+DCS: Duty Cycle Setting
- AT+DR: Data Rate (Can Only be Modified after ADR=0)
- AT+FCD: Frame Counter Downlink
- AT+FCU: Frame Counter Uplink
- AT+JN1DL: Join Accept Delay1
AT+JN2DL: Join Accept Delay2
AT+PNM: Public Network Mode
AT+RX1DL: Receive Delay1
AT+RX2DL: Receive Delay2
AT+RX2DR: Rx2 Window Data Rate
AT+RX2FQ: Rx2 Window Frequency
AT+TXP: Transmit Power

Information
AT+RSSI: RSSI of the Last Received Packet
AT+SNR: SNR of the Last Received Packet
AT+VER: Image Version and Frequency Band
AT+FDR: Factory Data Reset
AT+PORT: Application Port
AT+CHS: Get or Set Frequency (Unit: Hz) for Single Channel Mode
AT+CHE: Get or Set eight channels mode, Only for US915, AU915, CN470

3.2 Common AT Command Sequence

3.2.1 Multi-channel ABP mode (Use with SX1301/LG308)
If device has not joined network via OTAA:
 AT+FDR
 AT+NJM=0
 ATZ

If device already joined network:
 AT+NJM=0
 ATZ

3.2.2 Single-channel ABP mode (Use with LG01/LG02)
AT+FDR Reset Parameters to Factory Default, Keys Reserve
AT+NJM=0 Set to ABP mode
AT+ADR=0 Set the Adaptive Data Rate Off
AT+DR=5 Set Data Rate
AT+TDC=300000 Set transmit interval to 5 minutes
AT+CHS=868400000 Set transmit frequency to 868.4Mhz
AT+DADDR=26 01 1A F1 Set Device Address to 26 01 1A F1
ATZ Reset MCU
4. Upload Firmware

User can use the LGT-92’s USB port to upgrade firmware into it. The hardware connection for upgrade firmware is as below:

Connection:
- ST-LINK v2 5.0v <--> Dupont red pin
- ST-LINK v2 GND <--> Dupont black pin
- ST-LINK v2 SWCLK <--> Dupont green pin
- ST-LINK v2 SWDIO <--> Dupont white pin
- LGT-92 power can be on or off.

Step1: Install [ST-LINK driver](#) first and then install [ST-LINK Utility](#).

Step2: Download the [LGT-92 Image files](#).

Step3: Open ST-LINK utility, **file --> open file** to select the image to be upgraded.

Step4: Keep pushing the small reset button on LGT92 and then click the “Program Verify” button on ST-LINK.
Step 5: The led on the ST-LINK adapter will now blinking, once see it blinking; release the reset button on the LGT-92.

Step 6: The led on the ST-LINK adapter will now blinking, once see it blinks; release the reset button on the LGT-92. The ST-Link utility will pop up a download window. Click the start button to download the image to LGT-92.
5. Developer Guide

5.1 Source Code

Software Source Code Download Link.
Hardware Source Code Download Link

5.2 Compile Source Code

5.2.1 Set up Keil compile environment

Assume you already have Keil uVision5 installed. Below step shows how to install MDK support and get license.

1: Open the web: http://www2.keil.com/stmicroelectronics-stm32/mdk

2: Download the keil

3: Login with an account that has administration rights.

4: Right-click the µVision icon and select Run as Administrator... from the context menu.

5: Open the dialog File — License Management... and select the Single-User License tab.

6: Click the button Get LIC via Internet..., then click the button OK to register the product. This action opens the License Management page on the Keil web site.
7: Enter the **Product Serial Number 4PPFW-Q8EHZ-M0D5M** along with your contact information and click the button **Submit**. An e-mail is sent back with the **License ID Code (LIC)** within a few minutes.

1. ![Image](image1.png)

2. ![Image](image2.png)

3. ![Image](image3.png)
8: To activate the Software Product, enter the LIC in the field **New License ID Code (LIC)** of the dialog **License Management**... and click **Add LIC**.

9: Finish
5.2.2 Install STM32L0 Series Device

1: Open the web: http://www.keil.com/dd2/pack/eula-container;
2: Find the STMicroelectronics STM32L0 Series Device and download it;
3: Find the Software Pack and installs it;
4: Add the Device, then you can rebuild the project.
Notice: If without add the Device, the keil would report this error.

5.2.3 Compile Source Code
1. Download the source code from [Software Source Code Download Link](#).
2. Use Keil to open the project file:
 STM32CubeExpansion_LRWAN/Projects/Multi/Applications/LoRa/DRAGINO-LRWAN(AT)/MDK-ARM/STM32L072CZ-Nucleo/Lora.uvprojx
3. In Keil, you can see what frequency band the code support.
4. If you want to change frequency, modify the Preprocessor Symbols. For example, change EU868 to US915

5. Compile and build

6. FAQ

6.1 Why there is 433/868/915 version?
Different country has different rules for the ISM band for using the LoRa. Although the LoRa chip can support a wide range of Frequency, we provide different version for best tune in the LoRa part. That is why we provide different version of LoRa.

6.2 What is the frequency range of LT LoRa part?
Different LT version supports different frequency range, below is the table for the working frequency and recommend bands for each model:

<table>
<thead>
<tr>
<th>Version</th>
<th>LoRa IC</th>
<th>Working Frequency</th>
<th>Best Tune Frequency</th>
<th>Recommend Bands</th>
</tr>
</thead>
<tbody>
<tr>
<td>433</td>
<td>SX1278</td>
<td>Band2(LF): 410 ~525 Mhz</td>
<td>433Mhz</td>
<td>CN470/EU433</td>
</tr>
<tr>
<td>868</td>
<td>SX1276</td>
<td>Band1(HF):862~1020 Mhz</td>
<td>868Mhz</td>
<td>EU868</td>
</tr>
</tbody>
</table>
6.3 How to change the LoRa Frequency Bands/Region?
User can follow the introduction for how to upgrade image. When download the images, choose the required image file for download.

6.4 Can I use Private LoRa protocol?
The stock firmware is based on LoRaWAN protocol. User can use a private LoRa protocol in LGT-92, this section describe an example for base LoRa transfer. It is a reference/demo and we didn’t provide further software develop support on this topic.
In this demo, we will show the communication between LoRa Shield and LGT-92, both of them use the basic LoRa library. LGT-92 will send a message to LoRa Shield and LoRa Shield will print it to the console.

LoRa Shield + UNO:
Use the [LoRa Library](#) and upload the [LoRa Receive](#) Sketch to Arduino. Open the serial monitor to Arduino, it acts as a LoRa Receiver and listen on the frequency: 868.3Mhz

LGT-92:
Use the [LoRa RAW code](#). The project file is in: MDK-ARM\STM32L072CZ-Nucleo\Lora.uvprojx
Compile it and Upload it to LGT-92, the LGT-92 will transfer on the frequency 868.3Mhz.

In Arduino Console, it will see:

```
LoRa Receiver
Received packet 'Hello,LoRa shield' with RSSI -32
Received packet 'Hello,LoRa shield' with RSSI -33
Received packet 'Hello,LoRa shield' with RSSI -34
Received packet 'Hello,LoRa shield' with RSSI -33
```

6.5 How to set up LGT-92 to work in 8 channel mode in US915, AU915, CN470 bands?

By default, the frequency bands US915, AU915, CN470 works in 72 frequencies. And many gateways is 8 channel gateways, in such case, the OTAA joined time and uplink schedule is long and unpredictable while the LGT-92 hopping in 72 frequency.

User can configure the LGT-92 to work in 8 channel models by using the AT+CHE command. For example, in US band, the table is as below. If we run AT+CHE=2. The device will work in Channel 8-15.

<table>
<thead>
<tr>
<th>CHE</th>
<th>US915 Uplink Channels(125KHz,4/5,Unit:MHz,CHS=0) ENABLE Channel 0-63</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>902.3 902.5 902.7 902.9 903.1 903.3 903.5 903.7 Channel 0-7</td>
</tr>
<tr>
<td>1</td>
<td>903.9 904.1 904.3 904.5 904.7 904.9 905.1 905.3 Channel 8-15</td>
</tr>
<tr>
<td>2</td>
<td>905.5 905.7 905.9 906.1 906.3 906.5 906.7 906.9 Channel 16-23</td>
</tr>
<tr>
<td>3</td>
<td>907.1 907.3 907.5 907.7 907.9 908.1 908.3 908.5 Channel 24-31</td>
</tr>
<tr>
<td>4</td>
<td>908.7 908.9 909.1 909.3 909.5 909.7 909.9 910.1 Channel 32-39</td>
</tr>
<tr>
<td>5</td>
<td>910.3 910.5 910.7 910.9 911.1 911.3 911.5 911.7 Channel 40-47</td>
</tr>
<tr>
<td>6</td>
<td>911.9 912.1 912.3 912.5 912.7 912.9 913.1 913.3 Channel 48-55</td>
</tr>
<tr>
<td>7</td>
<td>913.5 913.7 913.9 914.1 914.3 914.5 914.7 914.9 Channel 56-63</td>
</tr>
</tbody>
</table>

6.6 What is the pin mapping for the USB program cable?

<table>
<thead>
<tr>
<th>Pin</th>
<th>Color</th>
<th>USB Pin</th>
<th>UART pin</th>
<th>ST-Link Pin</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Red</td>
<td>VCC</td>
<td>N/A</td>
<td>+5V</td>
</tr>
<tr>
<td>2</td>
<td>White</td>
<td>D- (N/A)</td>
<td>LGT-RXD</td>
<td>SWDIO</td>
</tr>
<tr>
<td>3</td>
<td>Green</td>
<td>D+(N/A)</td>
<td>LGT-TXD</td>
<td>SWCLK</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>ID (N/A)</td>
<td>N/A</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Black</td>
<td>GND</td>
<td>GND</td>
<td>GND</td>
</tr>
</tbody>
</table>
6.7 How to set up LGT-92 to work with Single Channel Gateway such as LG01/LG02?

In this case, users need to set LGT-92 to work in ABP mode & transmit in only one frequency. Assume we have a LG02 working in the frequency 868400000 now, below is the steps.

Step1: Log in TTN, Create an ABP device in the application and input the network session key (NETSKEY), app session key (APPSKEY) from the device.

![Device Configuration](image)

Note: user just need to make sure above three keys match, User can change either in TTN or Device to make them match. In TTN, NETSKEY and APPSKEY can be configured by user in setting page, but Device Addr is generated by TTN. User can also change the Device ADDR in TTN by using the [The Things Network CLI](https://www.thethingsnetwork.org/tools/cli).

Step2: Run AT Command to make LGT-92 work in Single frequency & ABP mode. Below is the AT commands:

- `AT+FDR` Reset Parameters to Factory Default, Keys Reserve
- `AT+NJM=0` Set to ABP mode
- `AT+ADR=0` Set the Adaptive Data Rate Off
- `AT+DR=5` Set Data Rate (Set AT+DR=3 for 915 band)
- `AT+TDC=300000` Set transmit interval to 5 minutes
- `AT+CHS=868400000` Set transmit frequency to 868.4Mhz
- `AT+DADDR=26 01 1A F1` Set Device Address to 26 01 1A F1
- `ATZ` Reset MCU

As shown in below:
LGT-92 LoRa GPS Tracker User Manual
7. Order Info

Part Number: LGT-92-xx

XX: The default frequency band
✓ AS923: LoRaWAN AS923 band
✓ AU915: LoRaWAN AU915 band
✓ EU433: LoRaWAN EU433 band
✓ EU868: LoRaWAN EU868 band
✓ KR920: LoRaWAN KR920 band
✓ US915: LoRaWAN US915 band
✓ IN865: LoRaWAN IN865 band
✓ CN470: LoRaWAN CN470 band

8. Packing Info

Package Includes:
✓ LGT-92 LoRa GPS Tracker x 1
✓ USB recharge cable x 1
✓ USB program cable x 1

Dimension and weight:
✓ Device Size: 85 x 48 x 15 cm
✓ Device Weight: 50g

9. Support

➢ Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.

➢ Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to

support@dragino.com
10. Reference

- Product Page, DataSheet
- Image Download
- AT Command Manual